Options
Parks, Michelle Maree
Loading...
Preferred name
Parks, Michelle Maree
Alternative Name
Parks, Michelle
ORCID
6 results
Now showing 1 - 6 of 6
- PublicationOpen Access2021–2023 Unrest and Geodetic Observations at Askja Volcano, Iceland(2024)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;; ; ; ; ;Unrest began in July 2021 at Askja volcano in the Northern Volcanic Zone (NVZ) of Iceland. Its most recent eruption, in 1961, was predominantly effusive and produced ∼0.1 km3 lava field. The last plinian eruption at Askja occurred in 1875. Geodetic measurements between 1983 and 2021 detail subsidence of Askja, decaying in an exponential manner. At the end of July 2021, inflation was detected at Askja volcano, from GNSS observations and Sentinel‐1 interferograms. The inflationary episode can be divided into two periods from the onset of inflation until September 2023. An initial period until 20 September 2021 when geodetic models suggest transfer of magma (or magmatic fluids) from within the shallowest part of the magmatic system (comprising an inflating and deflating source), potentially involving silicic magma. A following period when one source of pressure increase at shallow depth can explain the observations.102 14 - PublicationOpen AccessEditorial: The Impact of Open Science for Evaluation of Volcanic HazardsThe Open Science paradigm addresses the scientific process of producing and sharing knowledge and data as early as possible in the research development, through digital and collaborative technology. It includes findable and interoperable data, access to data processing platforms, and sharing of research products within the scientific community and with stakeholders. Open Science increases the quality and impact of science by fostering reproducibility and interdisciplinarity.
713 17 - PublicationOpen AccessEUNADICS-AV early warning system dedicated to supporting aviation in the case of a crisis from natural airborne hazards and radionuclide clouds(2021)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;; ;; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;The purpose of the EUNADICS-AV (European Natural Airborne Disaster Information and Coordination System for Aviation) prototype early warning system (EWS) is to develop the combined use of harmonised data products from satellite, ground-based and in situ instruments to produce alerts of airborne hazards (volcanic, dust, smoke and radionuclide clouds), satisfying the requirement of aviation air traffic management (ATM) stakeholders (https://cordis.europa.eu/project/id/723986, last access: 5 November 2021). The alert products developed by the EUNADICS-AV EWS,i.e. near-real-time (NRT) observations, email notifications and netCDF (Network Common Data Form) alert data products (called NCAP files), have shown significant interest in using selective detection of natural airborne hazards from polar-orbiting satellites. The combination of several sensors inside a single global system demonstrates the advantage of using a triggered approach to obtain selective detection from observations, which cannot initially discriminate the different aerosol types. Satellite products from hyperspectral ultraviolet–visible (UV–vis) and infrared (IR) sensors (e.g. TROPOMI – TROPOspheric Monitoring Instrument – and IASI – Infrared Atmospheric Sounding Interferometer) and a broadband geostationary imager (Spinning Enhanced Visible and InfraRed Imager; SEVIRI) and retrievals from groundbased networks (e.g. EARLINET – European Aerosol Research Lidar Network, E-PROFILE and the regional network from volcano observatories) are combined by our system to create tailored alert products (e.g. selective ash detection, SO2 column and plume height, dust cloud, and smoke from wildfires). A total of 23 different alert products are implemented, using 1 geostationary and 13 polar-orbiting satellite platforms, 3 external existing service, and 2 EU and 2 regional ground-based networks. This allows for the identification and the tracking of extreme events. The EUNADICS-AV EWS has also shown the need to implement a future relay of radiological data (gamma dose rate and radionuclides concentrations in ground-level air) in the case of a nuclear accident. This highlights the interest of operating early warnings with the use of a homogenised dataset. For the four types of airborne hazard, the EUNADICS-AV EWS has demonstrated its capability to provide NRT alert data products to trigger data assimilation and dispersion modelling providing forecasts and inverse modelling for source term estimate. Not all of our alert data products (NCAP files) are publicly disseminated. Access to our alert products is currently restricted to key users (i.e. Volcanic Ash Advisory Centres, national meteorological services, the World Meteorological Organization, governments, volcano observatories and research collaborators), as these are considered pre-decisional products. On the other hand, thanks to the EUNADICS-AV–SACS (Support to Aviation Control Service) web interface (https: //sacs.aeronomie.be, last access: 5 November 2021), the main part of the satellite observations used by the EUNADICS-AV EWS is shown in NRT, with public email notification of volcanic emission and delivery of tailored images and NCAP files. All of the ATM stakeholders (e.g. pilots, airlines and passengers) can access these alert products through this free channel.560 30 - PublicationOpen AccessContribution of the EVER-EST project to the community of the Geohazard Supersites initiative(2017-04)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ;; ; ; ; ; ; ; ; The EVER-EST project (European Virtual Environment for Research - Earth Science Themes: a solution) is a H2020 project (2015-2018) aimed at the creation of a Virtual Research Environment (VRE) focused on the requirements of the Earth Science community. The VRE is intended to enhance the ability to collaborate, interoperate and share knowledge and experience between all relevant stakeholders, including researchers, monitoring teams and civil protection agencies. Among the innovations of the project is the exploitation of the “Research Object” concept.190 81 - PublicationRestrictedDistinguishing contributions to diffuse CO2 emissions in volcanic areas from magmatic degassing and thermal decarbonation using soil gas 222Rn–δ13 C systematics: Applicationto Santorini volcano,Greece(2013)
; ; ; ; ; ; ; ; ; ; ;Parks, M. M.; COMET+,Department of Earth Sciences,Oxford,OX13AN,UK ;Caliro, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italia ;Chiodini, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italia ;Pyle, D. M.; COMET+,Department of Earth Sciences,Oxford,OX13AN,UK ;Mather, T. A.; COMET+,Departmentb of Earth Sciences,Oxford,OX13AN,UK ;Berlo, K.; COMET+,Department of Earth Sciences,Oxford,OX13AN,UK ;Edmonds, M.; COMET+,Department of EarthSciences,Cambridge,CB23EQ,UK ;Biggs, J.; COMET+,School of Earth Sciences,UniversityofBristol,BristolBS81RJ,UK ;Nomikou, P.; Department of Geology and Geoenvironment,University of Athens,Athens,Greece ;Raptakis, C.; Higher Geodesy Laboratory,National Technical University,Athens,Greece; ; ; ; ; ; ; ; ; Between January 2011 and April 2012, Santorini volcano (Greece) experienced a period of unrest characterised by the onset of detectable seismicity and caldera-wide uplift. This episode of inflation represented the first sizeable intrusion of magma beneath Santorini in the past 50 years. We employ a new approach using 222 Rn– δ 13 C systematics to identify and quantify the source of diffuse degassing at Santorini during the period of renewed activity. Soil CO 2 flux measurements were made across a network of sites on Nea Kameni between September 2010 and January 2012. Gas samples were collected in April and September 2011 for isotopic analysis of CO 2 ( δ 13 C), and radon detectors were deployed during September 2011 to measure ( 222 Rn). Our results reveal a change in the pattern of degassing from the summit of the volcano (Nea Kameni) and suggest an increase in diffuse CO 2 emissions between September 2010 and January 2012. High-CO 2 -flux soil gas samples have δ 13 C ∼ 0 .Using this value and other evidence from the literature we conclude that these CO 2 emissions from Santorini were a mixture between CO 2 sourced from magma, and CO 2 released by the thermal or metamorphic breakdown of crustal limestone. We suggest that this mixing of magmatic and crustal carbonate sources may account more broadly for the typical range of δ 13 CvaluesofCO 2 (from ∼− 4 to ∼+ 1 )in diffuse volcanic and fumarole gas emissions around the Mediterranean, without the need to invoke unusual mantle source compositions. At Santorini a mixing model involving magmatic CO 2 (with δ 13 C of − 3 ± 2 and elevated ( 222 Rn)/CO 2 ratios ∼ 10 5 –10 6 Bqkg − 1 )andCO 2 released from decarbonation of crustal limestone (with ( 222 Rn)/CO 2 ∼ 30–300 Bqkg − 1 ,and δ 13 Cof + 5 ) can account for the δ 13 C and ( 222 Rn)/CO 2 characteristics of the ‘high flux’ gas source. This model suggests ∼ 60% of the carbon in the high flux deep CO 2 end member is of magmatic origin. This combination of δ 13 Cand( 222 Rn) measurements has potential to quantify magmatic and crustal contributions to the diffuse outgassing of CO 2 in volcanic areas, especially those where breakdown of crustal limestone is likely to contribute significantly to the CO 2 flux349 62 - PublicationOpen AccessMercury emissions from soils and fumaroles of Nea Kameni volcanic centre, Santorini (Greece)There have been limited studies to date targeting mercury emissions from volcanic fumarolic systems, and no mercury flux data exist for soil or fumarolic emissions at Santorini volcanic complex, Greece. We present results from the first geochemical survey of Hg and major volatile (CO2, H2S, H2O and H2) concentrations and fluxes in the fumarolic gases released by the volcanic/hydrothermal system of Nea Kameni islet; the active volcanic center of Santorini. These data were obtained using a portable mercury spectrometer (Lumex 915+) for gaseous elemental mercury (GEM) determination, and a Multi-component Gas Analyzer System (Multi-GAS) for major volatiles. Gaseous Elemental Mercury (GEM) concentrations in the fumarole atmospheric plumes were systematically above background levels (~4 ng GEM m–3), ranging from ~4.5 to 121 ng GEM m–3. Variability in the measured mercury concentrations may result from changes in atmospheric conditions and/or unsteady gas release from the fumaroles. We estimate an average GEM/CO2 mass ratio in the fumarolic gases of Nea Kameni of approximately 10–9, which falls in the range of values obtained at other low-T (100°C) volcanic/hydrothermal systems (~10–8); our measured GEM/H2S mass ratio (10–5) also lies within the accepted representative range (10–4 to 10–6) of non-explosive volcanic degassing. Our estimated mercury flux from Nea Kameni’s fumarolic field (2.56 × 10–7 t yr–1), while making up a marginal contribution to the global volcanic non-eruptive GEM emissions from closed-conduit degassing volcanoes, represents the first available assessment of mercury emissions at Santorini volcano, and will contribute to the evaluation of future episodes of unrest at this renowned volcanic complex.
25 7