Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/16935
Authors: Bini, Giulio* 
Chiodini, Giovanni* 
Ricci, Tullio* 
Sciarra, Alessandra* 
Caliro, Stefano* 
Mortensen, Anette K* 
Martini, Marco* 
Mitchell, Andrew* 
Santi, Alessandro* 
Costa, Antonio* 
Title: Soil CO2 emission and stable isotopes (δ13C, δ18O) of CO2 and calcites reveal the fluid origin and thermal energy in the supercritical geothermal system of Krafla, Iceland
Journal: Journal of Volcanology and Geothermal Research 
Series/Report no.: /447 (2024)
Publisher: Elsevier
Issue Date: 2024
DOI: 10.1016/j.jvolgeores.2024.108032
Abstract: The Krafla geothermal system is located within a volcanic center that periodically erupts basaltic lavas, and has recently attracted an economic interest due to supercritical fluids forming near a shallow magma intrusion (~ 2 km depth). Here, we discuss new soil CO2 flux and stable isotope data of the CO2 efflux (δ13C) and hydrothermal calcites (δ13C, δ18O) of drill cuttings to estimate both the current magmatic outgassing from soils and the thermal flows in the geothermal system. Soil CO2 emission is controlled by tectonics, following the NNE-SSW fissure swarm direction and a WSW-ENE trend, and accounts for ~62.5 t/d. While the δ18O of the H2O in equilibrium with deep calcites is predominantly meteoric, both the δ13C of the soil CO2 efflux and of the fluids from which calcite precipitated have a clear magmatic origin, overlapping the δ13C estimated for the Icelandic mantle (–2.5 ± 1.1 ‰). Estimates based on the soil CO2 emission from the southern part of the system show that these fluxes might be sustained by the ascent and depressurization of supercritical fluids with a thermal energy of ~800 MW. Such significant amount of energy might reach 1.5 GW if supercritical conditions extended below the whole investigated area. Finally, we report an increase in the soil CO2 emission of about 3 times with respect to 14 years ago, likely due to recent changes in the fluid extracted for power production or magmatic activity. Pairing the soil CO2 emission with stable isotopes of the efflux and calcite samples has important implications for both volcano monitoring and geothermal exploration, as it can help us to track magmatic fluid upflows and the associated thermal energy.
Appears in Collections:Article published / in press

Files in This Item:
File Description SizeFormat
Bini et al. (2024) - Krafla CO2 flux and calcites.pdfOpen Access Published Article8.59 MBAdobe PDFView/Open
Show full item record

Page view(s)

28
checked on Apr 27, 2024

Download(s)

1
checked on Apr 27, 2024

Google ScholarTM

Check

Altmetric