Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/15470
DC FieldValueLanguage
dc.date.accessioned2022-02-25T07:19:41Z-
dc.date.available2022-02-25T07:19:41Z-
dc.date.issued2021-04-08-
dc.identifier.urihttp://hdl.handle.net/2122/15470-
dc.description.abstracthis contribution exposes the relative uncertainties associated with prediction patterns of landslide susceptibility. The patterns are based on relationships between direct and indirect spatial evidence of landslide occurrences. In a spatial database constructed for the modeling, direct evidence is the presence of landslide trigger areas, while indirect evidence is the presence of corresponding multivariate context in the form of digital maps. Five mathematical modeling functions are applied to capture and integrate evidence, indirect and direct, for separating landslide-presence areas from the areas of landslide assumed absence. Empirical likelihood ratios are used first to represent the spatial relationships. These are then combined by the models into prediction scores, ordered, equal-area ranked, displayed, and synthesized as prediction-rate curves. A critical task is assessing how uncertainty levels vary across the different prediction patterns, i.e., the modeling results visualized as fixed, colored groups of ranks. This is obtained by a strategy of iterative cross validation that uses only part of the direct evidence to model the pattern and the rest to validate it as a predictor. The conducted experiments in a mountainous area in northern Italy point at a research challenge that can now be confronted with relative rank-based statistics and iterative cross-validation processes. The uncertainty properties of prediction patterns are mostly unknown nevertheless they are critical for interpreting and justifying prediction results.en_US
dc.description.sponsorshipThis contribution was initially and partly supported by the European Commission Project “Mountain Risks: from Prediction to Management and Governance” (MRTN-CT-2006-035978, 2007–2010), Mountainrisk (2007).en_US
dc.language.isoEnglishen_US
dc.publisher.nameMDPIen_US
dc.relation.ispartofApplied Sciencesen_US
dc.relation.ispartofseries/11 (2021)en_US
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.subjectrankingen_US
dc.subjectuncertainty patternen_US
dc.subjectlandslide susceptibilityen_US
dc.subjectcross validationen_US
dc.subjectprediction patternen_US
dc.subjecttarget patternen_US
dc.subjectprediction modelen_US
dc.titleSpatial Uncertainty of Target Patterns Generated by Different Prediction Models of Landslide Susceptibilityen_US
dc.typearticleen
dc.description.statusPublisheden_US
dc.type.QualityControlPeer-revieweden_US
dc.description.pagenumber3341en_US
dc.identifier.URLhttps://www.mdpi.com/2076-3417/11/8/3341/htmen_US
dc.subject.INGVLandslidesen_US
dc.identifier.doi10.3390/app11083341en_US
dc.relation.references1. Schuster, R.L.; Highland, L.M. Socioeconomic and Environmental Impacts of Landslides in the Western Hemisphere; USGS Open-File Report 01-276; US Department of the Interior, US Geological Survey: Denver, CO, USA, 2001; 48p. 2. Kojima, H.; Chung, C.-J.; van Westen, C.J. Strategy on the landslide type analysis based on the expert knowledge and quantitative prediction model. Int. Arch. Photogramm. Remote Sens. 2000, 33 Pt 7, 701–708. 3. Shano, L.; Raghuvanshi, T.K.; Meten, M. Landslide susceptibility evaluation and hazard zonation techniques—A review. Geoenviron. Disasters 2020, 7, 1–19. [CrossRef] 4. Fabbri, A.G.; Chung, C.-J.; Cendrero, A.; Remondo, J. Is prediction of future landslide possible with a GIS? Nat. Hazards 2003, 30, 487–499. [CrossRef] 5. Chung, C.-J.; Fabbri, A.G. Representation of geoscience data for information integration. Nat. Resour. Res. 1993, 2, 122–139.[CrossRef] 6. Fabbri, A.G.; Cavallin, A.; Masetti, M.; Poli, S.; Sterlacchini, S.; Chung, C.-J. Spatial Uncertainty of Groundwater-vulnerability Predictions Assessed by a Cross-validation Strategy: An Application to Nitrate Concentrations in the Province of Milan, Northern Italy. In Risk Analysis VII and Brownfields V; Brebbia, C.A., Ed.; Wit Press: Southampton, UK, 2010; Volume 43, pp. 497–514.[CrossRef] 7. Chung, C.F.; Fabbri, A.G. Prediction Models for Landslide Hazard Using Fuzzy Set Approach. In Geomorphology and Environ-Mental Impact Assessment; Marchetti, M., Rivas, V., Eds.; Balkema: Rotterdam, The Netherlands, 2001; pp. 31–47. 8. Chung, C.F. Computer Program for the Logistic Model to Estimate the Probability of Occurrence of Discrete Events; GSC Paper 78-11; Geological Survey of Canada: Ottawa, ON, Canada, 1978; 23p. 9. Davis, J.C.; Chung, C.-J.; Ohlmacher, G.C. Two models for evaluating landslide hazards. Comput. Geosci. 2006, 32, 1120–1127.[CrossRef] 10. Chung, C.-J.F.; Fabbri, A.G. Validation of spatial prediction models for landslide hazard mapping. Nat. Hazards 2003, 30, 451–472.[CrossRef] 11. Chung, C.-J.; Fabbri, A.G. Systematic Procedures of Landslide Hazard Mapping for Risk Assessment Using Spatial Prediction Models. In Landslide Hazard and Risk; Glade, T., Anderson, M.G., Crozier, M.J., Eds.; Wiley: New York, NY, USA, 2004; pp. 139–174. 12. Chung, C.-J. Using likelihood ratio functions for modeling the conditional probability of occurrence of future landslides for risk assessment. Comput. Geosci. 2006, 32, 1052–1068. 13. Chung, C.F.; Fabbri, A.G. Probabilistic prediction models for landslide hazard mapping. Photogramm. Eng. Remote Sens. 1999, 65, 1389–1399. 14. Chung, C.-J.F.; Moon, W.M. Combination rules of spatial geoscience data for mineral exploration. Geoinformatics 1991, 2, 159–169.[CrossRef] 15. Chung, C.-J.; Fabbri, A.G. Mineral occurrence target mapping: A general iterative strategy in prediction modeling for mineral exploration. Nat. Resour. Res. 2019, 29, 115–134. [CrossRef] 16. Studio Statistico Dell’area di Tirano Sud (Predisposition of Slopes to Mass Movements through Prediction-Rate Curves. Statistical Study of the Tirano South Area). Master of Sciences Thesis, University of Milano-Bicocca, Milan, Italy, 2008. (in Italian). 17. Poli, S.; Sterlacchini, S. Landslide representation strategies in susceptibility studies using weights-of-evidence modeling technique. Nat. Resour. Res. 2007, 16, 121–134. [CrossRef] 18. Fabbri, A.G.; Chung, C.F. On blind tests and spatial prediction models. Nat. Resour. Res. 2008, 17, 107–118. [CrossRef] 19. Fabbri, A.G.; Poli, S.; Sterlacchini, S.; Cavallin, A.; Chung, C.-J. Uncertainty of Class Membership in Spatial Prediction Modeling: Follow-up Study to an Application to Complex Landslides. In Proceedings of the International Association for Mathematical Geosciences—IAMG—Mathematical Geosciences at the Crossroad of Theory and Pratice, Salzburg, Austria, 5–9 September 2011. 12p. [CrossRef] 20. Fabbri, A.G.; Poli, S.; Patera, A.; Chung, C.-J. Estimation of Information Loss When Masking Conditional Dependence and Cate-gorizing Continuous Data: Further Experiments on a Database for Spatial Prediction Modeling in Northern Italy. In Mathematics of Planet Earth; Pardo-Igúzquiza, E., Guardiola-Albert, C., Heredia, J., Moreno-Merino, L., Durán, J.J., Vargas-Guzmán, J. A., Eds.; Springer: Heidelberg, Germany, 2014; pp. 291–294. 21. Fabbri, A.G.; Mauriello, M.R.; Chung, C.J. Using Blind-Tests for Database Evaluation in the Prediction of Rotational-Translational Landslides in the Tirano North Area, Northern Italy. In Risk Analysis VIII; Brebbia, C.A., Popov, V., Eds.; WIT Press: Southampton, UK, 2012; Volume 44, pp. 263–280. [CrossRef] 22. Blahut, J.; Horton, P.; Sterlacchini, S.; Jaboyedoff, M. Debris flow hazard modelling on medium scale: Valtellina di Tirano, Italy. Nat. Hazard Earth Syst. Sci. 2010, 10, 2379–2390. [CrossRef] 23. Sterlacchini, S.; Ballabio, C.; Blahut, J.; Masetti, M.; Sorichetta, A. Spatial agreement of predicted patterns in landslide susceptibility maps. Geomorphology 2011, 125, 51–61. [CrossRef] 24. Blahut, J.; Van Westen, C.J.; Sterlacchini, S. Analysis of landslide inventories for accurate prediction of debris-flow source areas. Geomorphology 2010, 119, 36–51. [CrossRef] 25. Blahut, J.; Poretti, I.; De Amicis, M.G.M.; Sterlacchini, S. Database of geo-hydrological disasters for civil protection purposes. Nat. Hazards 2011, 60, 1065–1083. [CrossRef] 26. Fabbri, A.G.; Chung, C.-J. How credible is my hazard map? Dissecting a prediction pattern of landslide susceptibility. WIT Trans. Eng. Sci. 2018, 121, 3–19. [CrossRef] 27. Fabbri, A.G.; Cavallin, A.; Patera, A.; Sangalli, L.; Chung, C.-J. Comparing Patterns of Spatial Relationships for Susceptibility Prediction of Landslide Occurrences. In Advancing Culture of Living with Landslides; Advances in Landslide Science Set, 2; Mikoš, M., Tiwari, B., Yin, Y., Sassa, K., Eds.; Springer International Publishing: Cham, Switzerland, 2017; Volume 2, pp. 1135–1144.en_US
dc.description.obiettivoSpecifico2TR. Ricostruzione e modellazione della struttura crostaleen_US
dc.description.journalTypeJCR Journalen_US
dc.contributor.authorFabbri, Andrea G.-
dc.contributor.authorPatera, Antonio-
dc.contributor.departmentDISAT, Università di Milano-Bicocca, 20126 Milan, Italyen_US
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italiaen_US
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.orcid0000-0001-7641-4689-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat
applsci-11-03341.pdfOpen Access published article10.76 MBAdobe PDFView/Open
Show simple item record

Page view(s)

23
checked on Apr 27, 2024

Download(s)

21
checked on Apr 27, 2024

Google ScholarTM

Check

Altmetric