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Abstract: This contribution exposes the relative uncertainties associated with prediction patterns of
landslide susceptibility. The patterns are based on relationships between direct and indirect spatial
evidence of landslide occurrences. In a spatial database constructed for the modeling, direct evidence
is the presence of landslide trigger areas, while indirect evidence is the presence of corresponding
multivariate context in the form of digital maps. Five mathematical modeling functions are applied
to capture and integrate evidence, indirect and direct, for separating landslide-presence areas from
the areas of landslide assumed absence. Empirical likelihood ratios are used first to represent the
spatial relationships. These are then combined by the models into prediction scores, ordered, equal-
area ranked, displayed, and synthesized as prediction-rate curves. A critical task is assessing how
uncertainty levels vary across the different prediction patterns, i.e., the modeling results visualized
as fixed, colored groups of ranks. This is obtained by a strategy of iterative cross validation that uses
only part of the direct evidence to model the pattern and the rest to validate it as a predictor. The
conducted experiments in a mountainous area in northern Italy point at a research challenge that can
now be confronted with relative rank-based statistics and iterative cross-validation processes. The
uncertainty properties of prediction patterns are mostly unknown nevertheless they are critical for
interpreting and justifying prediction results.

Keywords: landslide susceptibility; ranking; cross validation; prediction model; prediction pattern;
target pattern; uncertainty pattern

1. Introduction

Predicting landslide susceptibility of a region or study area has become a critical
necessity with the continuing expansion of urbanizations across hazardous landscapes,
increasing soil deterioration and the extensive damages inflicted by landslides [1]. Regional
approaches to quantitative predictions have developed following the availability of the-
matic maps in digital form, including that of interpreted aerial photography and remotely
sensed images. Examples of themes related to mass movement processes are expressions
of various aspects of the rocks, soil, land cover, land use, soil permeability, groundwater
table, and topographic surfaces [2,3].

In any application, the themes are hopefully representing the gravity-induced physical
context of the process of slope failure. For this reason, the landslides are considered spatially
related with the thematic map units or values over the study area of concern. These spatial
relationships are established and integrated by mathematical models that transform raw
data from specific landslide distribution maps and contextual maps into prediction maps
or maps of the likelihood of future landslide occurrence [4].

Obviously, the detail and accuracy of the digital maps used for modeling must be
congruous and the statistical relationships significant to obtain convincing likelihood maps
of landslide occurrences that, hopefully, are more informative than what is already known.
The term “convincing” must reflect the interpretable quality of the integrated likelihood
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maps as spatiotemporal predictions and the certainty—or conversely, the uncertainty—
associated with that quality.

The applications discussed in this contribution have the purpose of exposing aspects
of spatial predictions that are commonly ignored—validation, robustness, and uncertainty
of the resulting susceptibility levels expressed as relative ranks. They are the modeled
values that make up the prediction patterns.

Analyzed are a database of landslide occurrences and their spatial context in a study
area in northern Italy. The database has been the focus of experiments on comparison
of models and analysis of modeling structure. Here, we will focus exclusively on the
uncertainties affecting the ranks representing relative predicted levels of susceptibility to
active landslides.

The following section deals with the predictive methodology, the terminology, and the
analytical procedures applied. The next section describes the study area, its database for
modeling, and previous research on landslide susceptibility. Experimental results follow
on uncertainty identification and its relative measures. They consist of modeling prediction,
target and uncertainty patterns, their interpretation, and comparison. Conclusions deem
that uncertainty assessments are a desirable and necessary endeavor for making spatial
prediction modeling a worthwhile practice.

2. Predictive Methodology, Terminology, and Analytical Procedures

A unified framework for modeling prediction patterns was proposed by Chung and
Fabbri (1993) [5]. It was termed the “favorability function” and is used in the applications
that are the focus of this contribution. The term favorability was selected for its generality
in the meaning intended to be comprehensive and unified to cover a variety of mathe-
matical interpretations. The following is a summary of the concepts in the modeling, the
terminology used, and the processing strategy that enables us to assess spatial uncertainty.

A study area (SA) is first assumed to be selected by experts as sufficiently representa-
tive of the processes that are considered hazardous within it. Hopefully then, the statistics
from spatial quantitative data available in the SA are suitable for information extraction
by modeling. A second assumption is that we can have at least two subareas. First, an
occurrence subarea is identified as affected by the hazardous landslide process, with the
known presence of landslide trigger areas of a specific and congruous dynamic type. Then,
another subarea is selected of non-occurrences in which landslides are known to be absent
(or are unknown if present). The occurrence subarea is where the occurrences are located
and characterized, and it is considered a training area (TA) for establishing the spatial
relationships. Generally, the nonoccurrence subarea is the complement of the occurrence
subarea within the SA. In some cases, however, the nonoccurrence subarea is only part
of the SA or even outside the SA. This could also be the case with the occurrence area.
Commonly, the occurrence subarea is a very small portion of the SA. A third assumption is
that future occurrences within the SA will be similar in type and setting to the known ones.

To allow favorability function prediction modeling, a proposition is constructed
as follows:

Fi: that a point i in the SA will be affected by a future landslide |the presence of spatial evidence. (1)

The symbol | indicates “given.” The proposition is to be supported as true by means
of the known occurrence distribution and their setting. The setting is considered spatial
evidence. Therefore, the proposition links the occurrence locations (or their neighborhoods)
and their setting as multivariate context. To satisfy the proposition as a mathematical state-
ment, both the digital images representing the occurrence locations and their setting have
to be transformed into spatial relationships. These new images have been termed the direct
supporting pattern (DSP). They are the indexed occurrence locations. Indirect supporting
patterns of the proposition (ISPs) are termed the images of their setting. The term “pattern”
is used to indicate the results of this functional transformation into spatial relationships.

The landslide occurrences are converted into clusters of adjacent picture elements
or pixels with a numerical value sequentially identifying each occurrence. The image
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pixel values of the settings are transformed into normalized frequencies if derived from
categorical maps such as lithology or land use. Continuous field digital images, such
as elevation or slope angles, are transformed into density functions. The ratios of the
normalized frequencies and the density functions for the TA are divided by those of the
nonoccurrence subareas within the SA. These ratios are termed empirical likelihood ratios
(ELRs). We could also apply other types of normalization; nevertheless, the end results
would have the same purpose and functionality. ELRs, as described, range in value between
zero and infinity and provide a measure of support of the proposition in (1).

Many different mathematical models can be used to convert and integrate the ratios
into prediction patterns that classify the SA into levels of likelihood of future landslide
occurrence. We will be using five different models in our applications but the favorability
function modeling and the processing structure are independent of the mathematical
models that will be indicated later on.

In essence, the likelihood ratios enable us to separate the presence of occurrence from
their supposed absence within the SA. This separation uses another assumption. While
the normalized frequencies or the density functions in the TA (the occurrence subarea) are
related to observed/mapped landslide occurrences, the ones in the nonoccurrence subarea
relate to both the absence of occurrences and the unknown occurrences. For the latter,
we assume that their setting, due to being relatively rare, is diluted within the setting of
the absence of occurrences. This assumption allows considering the ratios as a form of
contrast between areas with presence and areas with a presumed absence of occurrences.
Commonly, the TA with respect to the SA is three or four orders of magnitude smaller.

A favorability function at each point of a SA should have two properties for modeling,
i.e.: (1) should be able to measure a relative level of likelihood that a point i in the SA
contains part of a future landslide of the given dynamic type and (2) should be able to
provide a measure of uncertainty associated with the function by using only the part of all
possible landslide occurrences present in the training area, TA.

Now suppose that we use a given prediction model, still unspecified at this point,
that generates integrated scores as predicted values for every pixel of the SA. The scores
are in some a-dimensional units or values between a minimum and a maximum. How
do we establish the very high, high, intermediate, low, and very low likelihood of future
landslide occurrence? This is not a simple question to answer, and it leads to further
assumptions depending on the kind of data available for the SA, database of DSP and ISPs,
and additional information.

Suppose, for instance, that we have temporal characterization for the many occur-
rences of the given specific dynamic type in the TA. We could use the occurrences from
an older time interval to model a prediction pattern and then overlay it with the locations
of the occurrences from the younger time interval. In this way, we obtain some statistics
about their proportions within higher likelihood scores. Should some of them fall within
the lower likelihood score areas, we would consider them as poorly predicted. Vice versa,
well-predicted occurrences should fall on the higher likelihood score areas. We have termed
this exercise as cross validation. In practice, this is a natural way to establishing how “good”
our prediction pattern is as a “predictor of future occurrences.”

Now let us suppose that the information on time partitioning of the occurrences,
the DSP, is not available, as it is in most cases. How can we proceed with some other
forms of cross validation? We could empirically pretend, for instance, not to know the
existence of some of the occurrences, e.g., 25% of them, and use the remaining 75% to
obtain a prediction pattern and then cross-validate it with the 25% we pretended not to
know and that was not used as DSP for modeling. In this case, the “future” landslide
occurrences for cross validation are the “next” 25%. Furthermore, we could operationally
devise iterative strategies, depending on the number of occurrences available as DSP, such
as (1) sequential exclusion of an arbitrary number of occurrences to be used for cross
validation of the pattern produced with the remaining ones, (2) sequential selection of
a number of occurrences for modeling and using the remainder for cross validation, or



Appl. Sci. 2021, 11, 3341 4 of 20

(3) random selection of a number of occurrences repeated a convenient number of times.
All these strategies will provide different ways to predicting the next arbitrarily selected
number or proportion of occurrences. Recall that we have not yet selected any particular
mathematical model for predicting.

Cross validation is a strategy for assessing the quality of our prediction modeling and
also for comparing different prediction patterns, produced either by varying the number of
ISPs or the mathematical models. The results of cross validations are tables of prediction
scores for numbers or proportions of occurrence pixels in the SA. How do we interpret
these dimensionless integrated scores generated for each pixel of a SA and ranging between
a minimum and a maximum?

Given the number of transformations from the original map unit names or continuous
values used to compute the ISPs and their conversion into relative scores, these are consid-
ered here as impossible to interpret directly by recognizing systematic changes or breaks.
Instead, the prediction scores are easily converted into equal-area ranks after sequencing
them in decreasing order. It was found convenient to obtain 200 ranks each corresponding
to 0.5% of the SA. By equal-area ranking the prediction scores, it becomes practical and
simple to display the prediction patterns and generate cross-validation tables of propor-
tions of validation occurrences for each rank and cumulative tables of these proportions to
be represented as curves.

A consequence of iterative cross validation is that a different prediction pattern is
generated each time so that the set of patterns can be used to further characterize the initial
prediction pattern obtained using all the occurrences in the DSP. We can then pile up the
patterns and, if their numbers are sufficiently large, apply some form of statistics to obtain
average and variance for each stuck of pixels in the SA. We have defined “target pattern”
as what we wish to have—a representation of all past and future landslide occurrences (as
susceptibility scores and associated uncertainty scores). In our case, some form of averaging
the ranks of the prediction patterns from the iterations. We have defined “uncertainty
patterns” as the expression of deviations from these averages. From practice, we have
found that a very robust means for generating a target pattern is selecting the median rank
for each pixel from the iteration prediction patterns, and for the uncertainty pattern, the
rank of the ranges of deviations from the median ranks.

Furthermore, three assumptions must be reasonably satisfied [6], namely, (a1) the
known landslide occurrences, the DSPs, are a “random selection” of all existing ones,
known and unknown (allowing to extend the favorability function from the TA to the entire
SA); (a2) the ISPs are correlated with the target pattern (allowing to estimate the function
using the known part of the target pattern in the TA); and (a3) the process of slope failure
is not random and follows a certain rule (allowing to model the favorability function).

Target and uncertainty patterns have opened the way to further characterize predic-
tion patterns. Some of these will be discussed in Section 4. Let us now consider some
favorability modeling functions of empirical likelihood ratios commonly applied and used
here in our analyses. They are fuzzy set membership function [7], linear and logistic regres-
sion functions [8,9], empirical likelihood ratio function [10–12], and Bayesian predictive
discriminant function [13]. We will abbreviate them as FZ, LI, LO, LR, and BP, respectively.
The modeling functions imply different representation and combination rules of spatial
relationships [5,7,14].

We will not discuss theoretical aspects of the modeling functions here because they
were amply dealt with in the above-mentioned contributions [5,7,10–14]. The focus of our
study is the characterization and interpretation of prediction patterns, independently of
the particular prediction models applied. Our concern is that their applications to the
same input data generate prediction patterns whose scores are in entirely different units,
and these are considered as not interpretable or comparable except in terms of equal-area
ranking. Moreover, they require entirely different combination rules. They imply diverse
assumed interpretations of the spatial relationships expressed by the empirical likelihood
ratios, and each interpretation combines ISPs with assumptions of conditional indepen-
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dence (between categorical, continuous field ISPs and for integration of the two types) [12].
In geomorphology, and geosciences in general, maps are often spatially correlated so that
such independence seldom exists or can be hypothesized. Nevertheless, it has been found
that the existence of a correlation between ISPs causes minor alterations to equal-area
rankings, mostly to the lower ranks [12,15].

3. Study Area, Database, and Previous Research

The Tirano South study area, whose location is shown in Figure 1, occupies the
southern half of a community area termed “Comunità Montana Valtellina di Tirano” in
the Province of Sondrio, Lombardy Region, in northern Italy. It was established in 1971
for socioeconomic and environmental protection (www.cmtirano.so.it; accessed on 7 April
2021). The geomorphology and landslide processes in the area were described by Sangalli
(2008) [16], who compiled the available information and constructed a database for an
initial landslide susceptibility analysis. Part of the data is being used in this contribution
that also covers the same study area.
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Figure 1. Locations of the Tirano South study area, in the Lombardy Region, northern Italy.

Elevations in this young Alpine geology area range between 300 and 3000 m a.s.l.
and rainfall from 700 to 1900 mm, thus providing different climatic conditions. Vegetation
consists of broad-leaved forests at lower elevations and coniferous forests at higher eleva-
tions. The geomorphology is controlled mostly by glacier activity, but anthropic activity
significantly affects land use at valley bottoms with tourism, agriculture, and industries.
Glacial and torrent erosion, together with intense rainfalls, are the triggers of slope insta-
bilities. Out of a variety of landslide phenomena in the area, 70 active landslides were
identified from published inventories. However, they did not contain sufficient information
for separating rotational from translational dynamic types. In addition to the inventories
used to generate digital images of landslide trigger area locations, various cartographies
related to slope instability were available for compilation and digitization into the database,
as shown in Figure 2. The database offers opportunities for experimenting on spatial
prediction modeling of landslide susceptibilities, hazards, and risks.

www.cmtirano.so.it
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Figure 2. The Tirano South database is shown that will be converted into a direct supporting pattern
(DSP) the 70 active landslide trigger areas, 70at, and the three categorical and five continuous
field digital maps to be converted into indirect supporting patterns (ISPs), ulp and ACDIS. The
explanation is in the text.

The Tirano South database consists of digital images within a raster of 1090 pixels by
1194 lines with 20 m resolution. The study area proper within the raster covers 646,091
pixels corresponding approximately to 258 km2. The trigger zones of the 70 active land-
slides, converted into DSP and abbreviated as 70at, cover 697 pixels, i.e., as a training area
(TA) a little less than 0.11% of the study area (SA). Eight cartographies are used to generate,
at the same 20 m resolution, the ISPs consisting of maps with 23 land use classes, u1–23,
with 51 geologic (lithologic) units, l1–51, and with eight permeability classes, p1–8 (three
categorical maps), in addition to aspect (0◦ to 359◦), A, topographic curvature (−32 to +29),
C, topographic digital elevation (350–2906 m), D, internal relief (0–111 m for 3 × 3 pixels),
I, and slope (0◦ to 61◦), S, all derived from a 5 × 5 m resolution digital elevation model,
DTM, resampled to 20 × 20 m (5 continuous field maps).

Previous research by Poli and Sterlacchini (2007) [17] on landslide susceptibility in
the Tirano area used an earlier and simplified database with 28 active complex landslides
and five binary and binarized factor maps applying the weights-of-evidence mathematical
model and generating arbitrary thresholds of prediction ranks. That and similar appli-
cations of spatial prediction modeling were criticized [18] so that in joint contributions
that used the same database, kindly shared by those authors, cross-validation procedures
were preferred. The purpose was to assess the relative quality of the modeling results
with an alternative model and different analytical processes that exposed the uncertainties
associated with the prediction patterns [19,20]. A further study with a wealth of controlled
information on Alpine landslides and three national–regional mapping initiatives provided
new data for the construction of a high-quality database for the Tirano study area. It
contained landslide inventories in addition to geological and soil–land use cartographies.
For the northern part of the Tirano study area, prediction patterns were thus generated
using both active and quiescent translational–rotational landslide scarps, the empirical
likelihood ratio function model, and iterative cross-validation strategies based on blind
tests [21].
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Indeed, the Tirano study area had become the focus of much more research on land-
slide susceptibility modeling and other types of landslides and associated floods due to the
wealth of information available and certified. Blahut et al. (2010a) [22] used two sets of
aerial photographic coverages, 20 years apart, to select natural-condition debris flows for
the estimation of the spatiotemporal probability of hazard initiation. The resulting distribu-
tion map was then used to model runout zone limitations using an empirical GIS-based
simulation tool. The experiments indicated that the spatial variability observed needed
validation tests for satisfactory interpretation. Furthermore, another study was carried out
by those authors [23] of the degree of spatial pattern agreement between different landslide
susceptibility maps that showed similar debris-flow predictive power. Their database con-
tained the distribution of 573 scarps, and one half was used for modeling a susceptibility
map, while the other half was used to validate the map. The similarity of predictive power,
however, did not necessarily produce similar spatial configurations of susceptibility ranks,
a fact that pointed at the variability of ranks and related spatial uncertainty.

Two more activities in the Tirano study area make it an exemplary instance of support-
ing background for natural hazard and risk studies. Blahut et al. (2010b) [24] constructed a
reliable operational inventory of landslides from three available official inventories. Their
tasks were (1) to prepare debris flow and factor maps inventories for susceptibility mod-
eling, (2) generate indices of accountability/reliability and selection of factor maps, (3)
evaluate/validate susceptibility maps, and (4) compare the results of different maps for
combining them into an integrated susceptibility representation. Various methods of subdi-
vision of debris flows and factor maps were obtained, including the separation of the Tirano
study area into three more congruous subareas—northern, central, and southern. Again,
high spatial variability of the susceptibility ranks was observed as related to the different
combinations of factor maps. This made it difficult to delimit the ranks into susceptibility
classes. Blahut et al. (2012) [25] studied the historical information on landslides and floods
in the Tirano area for hazard estimation and definition of tentative risk scenarios. They
developed a case study to exemplify the usefulness in their database of 489 records of
damaging events (from the years 1600 to 2001), for realistic scenario generation, producing
damage classification maps of territorial threats.

Recent analyses of the Tirano South database [16] focused on (1) credibility analysis
of a fuzzy set modeled prediction pattern of landslide susceptibility and separation of
well predicting from poorly predicting landslide occurrences [26] and (2) a generalized
procedural strategy for comparisons of prediction patterns of active and dormant land-
slides by different models [27]. This contribution wants to expand that procedure and
strategy attempting to interpret the uncertainties associated with target patterns and their
consequences for understanding the prediction patterns generated by the application of
those very same models.

4. Experimental Results

The Tirano South database, shown in Figure 2, was reanalyzed in order to expose the
uncertainties associated with prediction patterns. The stepwise procedure for generating
and assessing prediction patterns, proposed by Fabbri et al. (2017) [27], was also followed
here, i.e., (1) use models to obtain prediction patterns from likelihood ratios, (2) cross-
validate the patterns, (3) interpret the cross-validation results, and (4) obtain and compare
the target and uncertainty patterns via equal-area ranks. Furthermore, step (5) was added,
namely, analyze target, uncertainty, and 50% combination pattern relationships.

Table 1 shows the likelihood ratios for the ISPs computed for the Tirano South study
area. For the ISP units and value ranges, only the ratios ≥2 or ≈2 are shown in the table. A
ratio of 2 represents a normalized frequency in the presence of occurrences that is twice
that in their absence. The arbitrary value of 2 was used as an empirical rule of thumb
to separate the supportive ISP units or value ranges from the unsupportive ones of the
proposition in (1). A ratio of 1 represents that the frequency in the presence of occurrences
is the same as the one in their absence, i.e., null support of the proposition. Only the
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maximum values of the supportive ratios and respective units and value ranges are shown
in Table 1: two land-use classes (2.29 and 4.48); eight lithology units (5.19 to 5.52); three
permeability classes (1.92, 2.06 and 1.91), (categorical ISPs); one range of aspect angles
(maximum ratio 2.07); two curvature ranges (11.07 and 5.62); two elevation ranges (4.24
and 2.31); one internal relief range (5.97); and one slope angle range (4.26). All prediction
patterns generated by the five models have been based on the supports provided by all the
ratio values of which, for simplicity, only the most supportive are listed in Table 1.

Table 1. Subset is listed of categorical and continuous field ISPs in the Tirano South study area
and their respective empirical likelihood ratio values. They will be used for predictions using
as DSP the distribution of the set of landslides, 70at with ulpACDIS as ISPs. Abbreviations for
categorical ISPs are u1–23, land-use classes; l1–51, lithology units; and p1–8, permeability classes. For
the continuous field ISPs, A, C, D, I, and S are aspect, curvature, digital elevation, internal relief, and
slope, respectively. Values are bold if the ELR ≥ 2.00. In Italics is the corresponding range of values,
with the maximum ratio in brackets. In this reduced version, only ratios ≥2 or ≈2 are shown (table
modified after Tables 1 and 2 in Fabbri et al., 2017 [27]).

Supporting Categorical Units or Classes Converted to ISPs for DSP 70at

Land use u1–23
u2, Rock and scree vegetation; u3, Bedrock outcrops and
surficial deposits.

Lithology l1–51

l6, Sandstones; l20, Non-vegetated deposit; l26, Active
non-vegetated scree slope; l40, Outcropping quartzites; l44,
Outcropping ypo-abyssal rocks; l45, Intrusive rocks; l46,
Outcropping intrusive rocks; l49, Serpentinites.

Permeability p1–8

p2, Cohesive units with low permeability; p3, Cohesive
units with very low permeability; p4, Non-cohesive units
with high-medium permeability.

Categorical ISPs with ELR values≥2 or≈2

Land use u1–23
Lithology l1–51
Permeability p1–8

u2 = 2.29, u3 = 4.48;
l6 = 5.19, l20 = 18.91, l26 = 5.89, l40 = 6.15, l44 = 2.41,
l45 = 13.10, l46l46 = 19.79, l49 = 5.52;
p2 = 1.92, p3 = 2.06, p4 = 1.91.

Continuous field ISPs with ELR values≥ 2

Aspect (0◦-359◦), A
Curvature (−32–+29), C
D. Elevation (350–2906m), D
Int. Relief (0–111 m, 3 × 3 pixels), I
Slope (0◦–61◦), S

≥2: 168–198, (max 2.07);
≥2: −24–−7, (max 11.07); +7–+17, (max 5.62);
≥2: 1737–2104, (max 4.24); 2484–2629, (max 2.31);

≥2: 24–56, (max 5.97);
≥2: 37–57, (max 4.26)

4.1. Use Different Mathematical Models to Obtain Prediction Patterns from Likelihood Ratios

The empirical likelihood ratios represent the spatial relationships within the database.
They were obtained using the trigger zones distribution image of the 70 active land-
slides, 70at, as DSP, and the ratio transformed images of the three categorical and the
five continuous-field maps, ulpACDIS, as ISPs. Each model was applied to generate a
different prediction pattern. The models integrated the ratios for each ISP. The patterns,
displayed in Figure 3, were generated by the five mathematical models each requiring dif-
ferent assumptions and providing incompatible scores computed from identical inputs of
likelihood ratios. To identify the patterns and their inputs in the computations, a sequence
of short names was used as follows: MODEL_DSP_ISPs, as in FZ_70at_ulpACDIS to
BP_70at_ulpACDIS. The one-letter ISP abbreviations were used in analyses with subsets
of them.
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Figure 3. Prediction patterns using the different models: FZ, LI, LO, LR, and BP in (a–e), respectively,
all using 70at_ulpACDIS. Black patches are the oversized trigger zones of the 70 active landslides,
70at. Colors in the legend indicate groups of ranks of % of the study area (SA) in ascending order.

A convenient way to interpret the scores resulting from the modeling is by converting
them into 200 equal-area ranks after sequencing in descending order. Fixed recognizable
groups of ranks are then associated with pseudo-colors, as shown in the legend of Figure 3.
The 200 ranks are displayed in wider groups for lower ranks of lesser concern, and in
successively narrower groups for higher ranks of greater concern, e.g., 12.5%, 10%, 5%,
2.5%, 1.5%, and top 1%, of the area of the SA.
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The illustration shows the prediction patterns from the five models, all overlaid with
the distribution as black polygons of the 70 active landslide occurrences. The patterns
represent the likelihood of future landslide occurrences in the SA.

Comparing them, we can observe similarities among higher-ranking groups in the
northern part of the study area but strong differences are found in the southern part.
Wider patches with high values are in Figure 3b,c, from the LI and LO models, respectively.
Discontinuous patches are in Figure 3a,c,d, for the FZ, LR, and BP models. Altogether, there
is a similarity between Figure 3a,d,e), and some similarity between Figure 3b,c. Note that
we have to compare the same classes, fixed groups of equal-area ranks, in zones of concern.
They are the zones with relatively higher ranks but located far from the known occurrences.
In particular, we can focus on the top 10% ranks (90–99% and top 1%) corresponding, for
instance, to higher elevations (1740–2100 and 2480–2630 m a.s.l.), high slope angles (37–57◦),
and very low permeability, in addition to the particular types of land use and lithology
(see Table 1). How “good predictors” are the prediction patterns? Which one is the best or
preferable? For answering these questions, we will have to consider the prediction-rate
curves in Figure 4, described in the next step. They will provide a measure of predictability
of future landslide occurrences, i.e., in our case, the “next seven.”
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Figure 4. Prediction-rate curves are displayed generated by iterative cross validation using a sequen-
tial exclusion strategy of 7 out of 70 active landslides. (a) shows the aggregated iteration results for
models FZ, LI, LO, LR, and BP, and (b) shows the individual curves for the 10 iterations of the FZ
model and the aggregated curve as a thick red curve, corresponding to the red curve in (a).
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4.2. Cross-Validate the Prediction Patterns

A cross-validation strategy was used to obtain and characterize the patterns as pre-
dictors. Iterative cross validation by the sequential exclusion of seven was tentatively
selected out of the 70 active-landslide trigger zones in the DSP. It was computed to obtain
the corresponding prediction-rate tables. The tables associate cumulative proportions of
equal-area ranks of the prediction pattern with the corresponding cumulative proportions
of validation occurrences. From the tables, cumulative curves are obtained, as shown in
Figure 4. The illustration provides the prediction-rate curves from the iterative process
using the five models. The horizontal axis shows the proportion of study area as cumulative
equal-area ranks, each of 0.5% of the study area, i.e., ≈3230 pixels. The vertical axis shows
the corresponding cumulative proportion of occurrence pixels in the cumulative class. The
697 occurrence pixels are distributed over the 70at landslides so that the proportion of
occurrence corresponds to the pixel numbers in each.

Note that the curves in Figure 4b represent proportions of seven occurrences, while the
thick red curve represents the proportion of all 70 occurrences (curve FZ_70atm7_ulpACDIS,
where m indicates minus).

The widespread distribution of the curves is indicative of the uncertainty affecting
their aggregated thick red curve. What is predicted here is the likelihood of the “next”
seven occurrences. In the iterations, they are assumed to be unknown. In all iterations,
63 occurrences are used to generate a prediction pattern that is then cross-validated as a
predictor of the remaining seven occurrences. Note also that the proportions shown on
the vertical axis are three orders of magnitude smaller than those on the horizontal axis
(proportions of 697 pixels versus proportions of 646,091 pixels). As a reminder, the vertical
axis was kept half the length of the horizontal axis.

We can observe that the prediction-rate curves are not particularly good. For instance,
the thick red curve in Figure 4a shows that the top 10% ranks (0 to 0.1) contain about 14%
of the occurrences for FZ, LI, and LO, and 22% for LR and BP; the top 20% ranks contain
around 50% of the occurrences for FZ, LR, and BP, and about 26% for LI and LO; the top
30% ranks contain 96%, 91%, and 67% for BP, LR, and FZ, respectively, and about 57% for
LI and LO.

These relative proportions represent the predictive capability of the modeling results:
the proportion of predicted occurrences in the corresponding equal-area ranks. The shallow
initial part of the curves is a sign of poor congruity of the setting of the landslide trigger
areas used for cross validation. A good prediction pattern should provide an initially steep
prediction-rate curve through cross validation in which most of the validation occurrences
fall on higher ranks. The curves in Figure 4a show that the FZ, BP, and LR patterns of
Figure 3 predict better than those for LI and LO. Figure 4b shows, in addition to the FZ
prediction-rate curve identified with a thick red line (FZ_70atm7_ulpACDIS), the curves
for each of the 10 iterations of the FZ model.

Note that a shallow initial curve is the one from the fourth iteration. Recall that in
the iterations the cumulative proportions of occurrences in the diagram refers to the seven
occurrences being cross-validated, while the proportions for the aggregated FZ curve refer
to the 70 occurrences, validated into successive 10 groups of 7. What is being predicted
here are the “next” 7 occurrences using the “previous” 63. This is the best approach when
not having the time of the occurrences.

4.3. Interpret the Cross-Validated Results

The next step was to assemble sets of 10 prediction patterns to obtain via rank-based
statistics the corresponding target and uncertainty patterns. The term “target” refers to
what we are looking for as a validated prediction result. The term “uncertainty” refers to
the stability of it. Indeed, the prediction pattern is the most informed prediction because
it is using all information available, all the 70 active occurrences as DSP. However, we do
not know its prediction capability. This is estimated by generating the target pattern via
iterative cross validations using whichever strategy we can apply.
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Figure 5 shows the uncertainty patterns obtained applying the five models to the
database, the 70at as DSP and ulpACDIS as ISPs. To obtain the target patterns, rank-
based statistics was used to select for each pixel the corresponding median rank of the
10 prediction patterns generated by the iterative cross-validation process 70atm7. The
display of the target patterns is not provided here due to the extreme similarity with
the corresponding prediction patterns in Figure 3 when using the same color legend.
More informative are the uncertainty patterns in Figure 5, generated by ranking the
ranges of ranks around the median ranks of the target pattern. The wider is the range the
higher is the uncertainty of the corresponding target pattern (and consequently also of the
prediction pattern).
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We can use the same color legend for the uncertainty ranks as for the prediction
or target ranks. The uncertainty ranks relate to all target ranks from high to low. For
uncertainty, however, the desirable ranks are the lower ones, indicating lower uncertainties.
Obviously, if a high target rank corresponds to a high uncertainty rank, it is considered less
credible than one corresponding to a low uncertainty rank. Figure 5 shows areas of high
uncertainty, higher ranks, to the North in all the five uncertainty patterns. As to those along
the valley edges, they are visible only in Figure 5a,b,d, for FZ, LI, and LR, respectively.
Other areas of high uncertainty to the south are common to all the five patterns in the
illustration.

At this point, it becomes important to study the relationships between target and
corresponding uncertainty ranks with the 70 active landslide occurrences, 70at, from the
70atm7_ulpACDIS process of cross validation.

4.4. Obtain and Compare the Target and Uncertainty Patterns via Equal-Area Ranks

By cross-validating the target and uncertainty patterns with the 70 active landslides,
70atm7, the relationship between target and uncertainty ranks were visualized, conve-
niently expressed in *1000 units (for instance, rank 900 corresponds to the top 10% equal-
area rank). Figure 6 shows as an example the relationship between the target ranks,
in descending order on the horizontal axis, and the respective uncertainty ranks, in as-
cending order on the vertical axis. It was obtained from the cross-validation process
FZ_70m7at_ulp_ACDIS. In the illustration, the diagram shows that the 70 points are dis-
tributed so that the higher target ranks on the horizontal axis appear to correspond to
relatively lower uncertainty ranks. It is worth noting that there are five encircled points
corresponding to areas of relatively high uncertainty ranks and the lowest target ranks.
They are occurrences that contribute to the shallow part of the prediction-rate curves in
Figure 4. They could be considered outliers amongst the occurrences used as DSP.
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Figure 6. Target ranks in *1000 for the FZ model on the horizontal axis versus uncertainty ranks on
the vertical axis, for the 70 active landslides, 70at, in the Tirano South study area. The five encircled
points have the lowest target ranks. See text for explanation.

Such a tendency for the patterns from the five models can also be visualized by se-
quencing the target ranks of the 70 occurrences in decreasing order, constructing histograms
with pair of columns of target and corresponding uncertainty ranks. This is accomplished
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in Figure 7 that shows in blue the target ranks and in red the corresponding uncertainty
ranks for each occurrence. For all models, the histograms express a preferential distribution
of higher uncertainty ranks for lower target ranks.
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Figure 7. Histograms of decreasing target ranks (blue columns) and corresponding uncertainty ranks
(red columns) for models FZ, LI, LO, LR, and BP from (a–e), respectively, using the cross-validation
process 70atm7_ulpACDIS.

We may wonder whether that tendency is visible also in the target patterns (or in the
prediction patterns). This can be observed by generating combination patterns that relate
uncertainty and target ranks by tentatively thresholding the uncertainty patterns. We have
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generated the 50% combination patterns for each target pattern, as shown in Figure 8. A
threshold value was arbitrarily set at the lower 50% uncertainty ranks in the study area
to select the corresponding target ranks (or alternatively, we could have used prediction
ranks from the respective prediction patterns).
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Figure 8. The 50% combination patterns, 70atm7, using the different models FZ, LI, LO, LR, and
BP in (a–e), respectively. Black patches are the oversized trigger zones of the 70 active landslides,
70at. The dark-gray areas represent 50% of the study area with relatively higher uncertainty. The
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By comparing the uncertainty pattern in Figure 5 with the prediction patterns in
Figure 3, we can infer that the combination patterns in Figure 8 have retained high values
in the southern part of the SA that shows low uncertainty (lower 50% uncertainty ranks).
In the northeastern part, however, uncertainty is relatively high (upper 50% uncertainty
ranks) so that the high target ranks are not visible in the combination patterns. What are
then the characteristics of the 50% combination patterns? How is the uncertainty range
threshold shaping them?

Let us consider some revealing details of the rank distribution in a small window
of the 50% combination patterns, as shown in Figure 9. Seven landslide trigger areas are
displayed as black contours in the illustration. Some are predicted as uncertain and fall
on gray areas, in Figure 9b,c,e by LI, LO, and BP models. On the contrary, they have
low uncertainty in Figure 9a,d by FZ and LR models. Topologically, similar dispersed
patches are visible in Figure 9a,d,e, and more continuous ones in Figure 9b,c. The top 1%
combination ranks, purple color, show the high variability of these clusters of pixels. These
are the main characteristics of the patterns. They indicate weak robustness of the ranking
and the uncertainty at the occurrence location.
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Next, we can derive a more general characterization of an entire 50% combination
pattern by looking at low-uncertainty proportions or pixel numbers in the individual
200 ranks.

4.5. Analyze the Target, Uncertainty, and 50% Combination Pattern Relationships

Increasing uncertainty ranks with decreasing target ranks, as we have seen with the
70at landslide trigger areas via the 70atm7 process in Figures 6 and 7, are also found in
the target patterns. We can visualize their suspected higher uncertainty (hinted by the
curves in Figure 4b) for lower prediction ranks. This is carried out by generating plots
similar to the one in Figure 6 but with 646,091 points corresponding to the pixels in the SA,
using pairs of target and uncertainty patterns. Instead, the following simpler visualization
procedure was followed.

We have generated 200 equal-area ranks out of the prediction, target, and uncertainty
ranks, each corresponding to 0.5% of the study area (≈3230 pixels). Being concerned mostly
with the highest ranks, e.g., the higher 80%, we have displayed the numbers of pixels in
each combination pattern that corresponded with the 50% lower uncertainty ranks, leaving
out those with higher uncertainty ranks. We observed, therefore, the decrease in pixel
number for each rank due to the elimination of higher uncertainty ranking pixels and
detected which ranks were consequently more uncertain. These were the intermediate
ranks. Figure 10 compares this decrease in the 50% combination patterns from the five
models with the respective target ranks, i.e., the straight lines. In all cases, the intermediate
ranks show higher uncertainty, i.e., higher “loss” of target pixels in the combination
ranks, between rank 160th and rank 80th. The curves in Figure 10 have strongly variable
configurations with one or two concavities and different higher pixel numbers in the
vicinity of the 200th and the 40th ranks. Figure 10f contrasts the curves from models FZ
and LO. Note the absence of a drop in pixel number for the top ranks in Figure 10e. It
shows a sharper pick, as to be expected from the yellow prediction-rate curve from model
BP in Figure 4a that appears to be less sensitive to the suspected outlier occurrences.

We may wonder whether the curves indicate some form of database or modeling
signature. The curves in Figure 10 show how the combination patterns reach high uncer-
tainties at intermediate ranks. The relative uncertainties increase from initial lows to reach
one or two maximum values between rank 190th and rank 60th. Since this is observed
for all the patterns from the five models, it appears as a database property. Observe the
prediction-rate curves in Figure 4a and consider the curves in Figure 10 showing the num-
ber of target ranks corresponding to lower uncertainties close to the two extreme ranks
displayed. Would we want to select the top 10% combination ranks, from 200th to 180th,
as the acceptable part? Or alternatively, would we prefer the top 20% as more significant?
The properties of uncertainty and combination patterns are still unknown and remain a
research challenge.

4.6. Considerations on Prediction Patterns as Maps

What resembles a map, such as the display of a prediction pattern, is not necessar-
ily a map but more a representation of information extraction through normalizations,
conversions, assumptions, and integrations. At present, with what we know about a
study area, we have to be satisfied by the higher part of the prediction-rate curve and
by the corresponding combination pattern, perhaps fine-tuning the process. Otherwise,
additional information must be used to choose a satisfactory part of the prediction pattern.
Regarding the prediction patterns, would we want to discover instances of unmapped
landslide trigger zones in the higher 10% ranked areas away from the known ones? Is
the 50% combination pattern helpful in mapping more of what we know or that we do
not know? Should we wait for the next seven landslides to see where they will appear?
Where should we concentrate on more detailed mapping? How much of the study area
should we consider unfit for particular land uses or developments? Would we opt for
using cost/benefit or using safety criteria? Providing answers for decision making and
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subsequent risk analysis is the logical function of the prediction patterns of landslide
susceptibility, as we have discussed.
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and BP are in (a–e). In (f) is the overlay of curves for models FZ and LO. The target equal-area ranks
contain about 3230 pixels. Only the higher 160 ranks are shown here.

5. Concluding Remarks

Favorability function modeling was applied to the Tirano South database through
five different models of spatial relationships. All the prediction patterns obtained were
represented as relative ranks, including their derived target and uncertainty patterns. The
50% lower uncertainty ranks were tentatively used to extract the corresponding target
ranks as 50% combination patterns. In them, for all models, the proportion of less uncertain
pixels in the rank represents the level of confidence in the prediction. Possibly, the top
10% combination pixels are a significant part of the prediction pattern. We are trying to
find answers to questions such as the following: What are the consequences of higher
uncertainty for intermediate ranks in combination patterns? How are these diagrams
providing a measure of the quality of the prediction? Are they characteristic of the modeling
because of the model or the data? How much of the prediction pattern is reliable? How to
evaluate the higher ranks in the prediction patterns? Should we select the top 10% or 20%
combination ranks? What would our cost/benefit considerations and choices be? All we
have generated from the modeling are “relative” integrated equal-area ranks that must be
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interpreted as susceptibility to land-sliding. The model preference needs to be a function
of the interpretation of prediction patterns and their representation. In our case, FZ, BP,
and LR are equally satisfactory but less so for LI and LO, as to the pattern of predictive
performance. However, this may be just one of the criteria that might be used.

A five-step procedure is proposed for modeling prediction and uncertainty. The
uncertainty ranks are considered important to properly select the susceptible part of the
study area, i.e., susceptible to the “next seven” future” landslide occurrences. While
various other strategies have also been applied for iterative cross validation to obtain
slightly different prediction patterns, the sequential exclusion of seven occurrences appears
to do justice to the properties of the database. The procedure is proposed as critical in
spatial prediction modeling. Independently of the models used, a necessary research issue
is in the interpretation of the uncertainty associated with prediction patterns.

We have described our analysis and modeling results to indicate a way to predict and
the assumptions implied. Obviously, we suspect that our experiments on this particular
database have a more general significance beyond the specific study area or the five
mathematical models used. These considerations, we hope, will be useful to researchers
and users of susceptibility maps. This contribution does not provide a solution but poses
questions whose answers point at possible solutions.
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