Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/14979
Authors: Corradino, Claudia* 
Bilotta, Giuseppe* 
Cappello, Annalisa* 
Fortuna, Luigi* 
Del Negro, Ciro* 
Title: Combining Radar and Optical Satellite Imagery with Machine Learning to Map Lava Flows at Mount Etna and Fogo Island
Journal: Energies 
Series/Report no.: /14 (2021)
Publisher: MDPI
Issue Date: 2021
DOI: 10.3390/en14010197
URL: https://www.mdpi.com/1996-1073/14/1/197
Keywords: volcano remote sensing
machine learning classifier
lava flow mapping
synthetic aperture radar
optical data
Abstract: Lava flow mapping has direct relevance to volcanic hazards once an eruption has begun. Satellite remote sensing techniques are increasingly used to map newly erupted lava, thanks to their capability to survey large areas with frequent revisit time and accurate spatial resolution. Visible and infrared satellite data are routinely used to detect the distributions of volcanic deposits and monitor thermal features, even if clouds are a serious obstacle for optical sensors, since they cannot be penetrated by optical radiation. On the other hand, radar satellite data have been playing an important role in surface change detection and image classification, being able to operate in all weather conditions, although their use is hampered by the special imaging geometry, the complicated scattering process, and the presence of speckle noise. Thus, optical and radar data are complementary data sources that can be used to map lava flows effectively, in addition to alleviating cloud obstruction and improving change detection performance. Here, we propose a machine learning approach based on the Google Earth Engine (GEE) platform to analyze simultaneously the images acquired by the synthetic aperture radar (SAR) sensor, on board of Sentinel-1 mission, and by optical and multispectral sensors of Landsat-8 missions and Multi-Spectral Imager (MSI), on board of Sentinel-2 mission. Machine learning classifiers, including K-means algorithm (K-means) and support vector machine (SVM), are used to map lava flows automatically from a combination of optical and SAR images. We describe the operation of this approach by using a retrospective analysis of two recent lava flow-forming eruptions at Mount Etna (Italy) and Fogo Island (Cape Verde). We found that combining both radar and optical imagery improved the accuracy and reliability of lava flow mapping. The results highlight the need to fully exploit the extraordinary potential of complementary satellite sensors to provide time-critical hazard information during volcanic eruptions.
Appears in Collections:Article published / in press

Files in This Item:
File Description SizeFormat
2021 Corradino et al Del Negro ENERGIES.pdfOpen Access published article7.05 MBAdobe PDFView/Open
Show full item record

Page view(s)

376
checked on Apr 24, 2024

Download(s)

96
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric