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Abstract: Lava flow mapping has direct relevance to volcanic hazards once an eruption has begun.
Satellite remote sensing techniques are increasingly used to map newly erupted lava, thanks to
their capability to survey large areas with frequent revisit time and accurate spatial resolution.
Visible and infrared satellite data are routinely used to detect the distributions of volcanic deposits
and monitor thermal features, even if clouds are a serious obstacle for optical sensors, since they
cannot be penetrated by optical radiation. On the other hand, radar satellite data have been playing
an important role in surface change detection and image classification, being able to operate in all
weather conditions, although their use is hampered by the special imaging geometry, the complicated
scattering process, and the presence of speckle noise. Thus, optical and radar data are complementary
data sources that can be used to map lava flows effectively, in addition to alleviating cloud obstruction
and improving change detection performance. Here, we propose a machine learning approach
based on the Google Earth Engine (GEE) platform to analyze simultaneously the images acquired
by the synthetic aperture radar (SAR) sensor, on board of Sentinel-1 mission, and by optical and
multispectral sensors of Landsat-8 missions and Multi-Spectral Imager (MSI), on board of Sentinel-2
mission. Machine learning classifiers, including K-means algorithm (K-means) and support vector
machine (SVM), are used to map lava flows automatically from a combination of optical and SAR
images. We describe the operation of this approach by using a retrospective analysis of two recent
lava flow-forming eruptions at Mount Etna (Italy) and Fogo Island (Cape Verde). We found that
combining both radar and optical imagery improved the accuracy and reliability of lava flow mapping.
The results highlight the need to fully exploit the extraordinary potential of complementary satellite
sensors to provide time-critical hazard information during volcanic eruptions.

Keywords: volcano remote sensing; machine learning classifier; lava flow mapping; synthetic
aperture radar; optical data

1. Introduction

Lava flows represent a significant natural hazard to communities living at the edge
of an active volcano [1]. People, properties, and services can be severely damaged by
lava flows. When lava flows through inhabited areas, destruction is usually complete [2].
Timely and accurate measurements of the areal coverage of newly erupted lava are there-
fore a critical component of volcano monitoring [3]. To date, advancements in satellite
remote sensing offer incomparable opportunities for detecting and tracking eruptive ac-
tivity thanks to the massive amount of data with varying degrees of temporal and spatial
resolution provided from a number of sensors operating in the visible, infrared, thermal,
and microwave regions of the electromagnetic spectrum [4]. Once an eruption is in progress,
the monitoring provided by satellite data allows an extraordinary view of active lava flows
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and their associated hazards that might not otherwise be possible due to the large size and
inaccessibility of the affected areas [5].

The temperature of the fresh lava can vary between 1073 and 1273 K, while cooler
active surfaces may reach 673 K [6]. At these temperatures, the main radiant emissions are
in the thermal infrared (TIR), middle infrared (MIR), and shortwave infrared (SWIR) regions
of the spectrum [7]. A variety of multispectral satellites have sensors capable of measuring
these infrared emissions and, as such, are regularly adopted for volcano monitoring from
space (Table 1). Operational monitoring centers like the Etna Volcano Observatory (EVO)
of the INGV in Catania are nowadays heavily reliant on optical remote sensing to provide
detailed documentation of lava flow activity during an ongoing eruption [8]. In particular,
near infrared (NIR) bands (1.6–2.2 µm) are generally used to map hot lava flow [9–11],
while TIR bands (10–11 µm) are used to map cooling lava flow [12]. Visible (VIS) and NIR
bands are also used to automatically map the cooling lava flow area exploiting the 10-m
bands of the MultiSpectral Instrument (MSI) on board of Sentinel-2 satellite. This task is
achieved by applying a machine learning technique based on K-means and the Bayesian
Neural Network [13]. An increase in temperature of the crust characterizing active hot lava
flows leads color to change from red to yellow, thus being perceivable by VIS bands.

Table 1. Characteristics and attributes of some sensors used for the optical monitoring of volcanoes
by satellite (VNIR: visual and near infrared; SWIR: short-wave infrared; MIR: mid-infrared; TIR:
thermal infrared). (Updated after [7]).

Sensor Characteristics

Advanced Land Imager (ALI) on-board the NASA
Earth Observation (EO)-1 satellite

9 bands: VNIR-SWIR
Resolution: 30 m

Advanced Spaceborne Thermal Emission and
Reflection Radiometer (ASTER) on-board NASA

Terra

14 bands: VNIR-SWIR-TIR
Resolution: 15, 30 and 90 m

Advanced Very High Resolution Radiometer
(AVHRR) on-board the National Oceanic and

Atmospheric Administration (NOAA) satellites

5 bands: VNIR-SWIR-MIR-TIR
Resolution: 1100 m

Imager on-board the NASA Geostationary
Operational Environmental Satellite (GOES)

5 bands: VNIR-MIR-TIR
Resolutions: 1000–4000 m

Moderate-resolution Imaging Spectroradiometer
(MODIS) on-board NASA Terra and Aqua satellites

32 bands: VNIR-MIR-TIR
Resolutions: 250, 500 and 1000 m

Operational Land Imager (OLI) on-board the NASA
Landsat-8 satellite

9 bands: VNIR-SWIR
Resolutions: 15–30 m

Spinning Enhanced Visible and Infrared Imager
(SEVIRI) on-board the ESA Meteosat Second

Generation satellites

12 bands: VNIR-TIR
Resolution: 1000–3000 m

Thermal Infrared Sensor (TIRS) on-board the NASA
Lansdsat-8 satellite

2 bands: TIR
Resolution: 100 m

Visible Infrared Imaging Radiometer Suite (VIIRS)
on board the NASA Suomi National Polar-Orbiting

Partnership (S-NPP) satellite

22 bands: VNIR-SWIR-TIR
Resolutions: 375–750 m

Multi Spectral Instrument (MSI) on-board the
European Space Agency (ESA) Sentinel-2A and

Sentinel-2B satellites

10 bands: VNIR-SWIR
Resolutions: 10–20 m

Despite the heavy utilization of optical remote sensing data for the early detection
of volcanic thermal features and lava flows mapping, the presence of clouds and the
dependence on solar illumination can produce gaps in optical imagery and missing data
in optical time series [14]. For classification and monitoring purposes, this drawback
considerably influences the performances. Thus, active measurements from synthetic
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aperture radar (SAR) have also been used to map lava flows, since SAR is not affected by
time of day or atmospheric conditions (e.g., [15,16]).

SAR has shown to be a valuable data source for the detection of surface changes that
have direct relevance to volcanic hazards [17]. To fully utilize the information content
(both amplitude and phase) provided by SAR backscattering signal, detection methods are
based either on the evolution of the reflectivity, namely, the amplitude of the radar images,
or on variations in the correlation of the signal, which is a measure of the phase change.
In particular, the phase-based change detection methods work well for a post-eruption
assessment of volcanic deposits [18–20], but have some limitations in monitoring and
tracking eruption progression, as strong surface changes lead to loss of phase coherence
during an ongoing eruption [21]. Instead, the amplitude-based change detection methods
have particular strengths in identifying the onset of an eruption, the tracking of eruption
progression, and the detection and tracking of depositional features such as new emplace-
ment of surface lava flows [22–24]. This approach necessitates that variations in the SAR
backscattering signal in areas surrounding the fresh lava flows have to be small. Therefore,
the imaging geometry and flight passes of the SAR imagery must be as identical as possible.
In addition, the SAR images should be acquired with a very short temporal separation
(approximately days) to minimize the reduction in radar coherence due to environmental
changes in areas not covered by newly erupted lava. Various change detection techniques
in SAR images are used for producing a difference image by subtracting SAR backscattering
intensity images acquired before and after the monitored event, thus showing changes in
the roughness and the dielectric constant of the surface. As a result, the change image can
be classified in “change” and “no change” classes [25]; the most commonly used method
to perform this task is the histogram thresholding [26], but defining a threshold is not
straightforward and affects the classification results.

Despite the increasing importance gained over the last decade, automatic change
detection and classification from SAR images is still a difficult task [25,27,28]. This is
mainly due to (i) the high level of speckle noise that typically characterizes SAR images;
(ii) the complicated nature of the surface backscatter response in SAR data even for rather
homogeneous surfaces; (iii) the differences in imaging geometry (incident angle, orbit path,
etc.) between sequential SAR images, as the sensor never acquires successive images from
exactly the same position; and (iv) the poor performance of SAR in accurately delineating
the boundary of changed regions. Finally, it should not be overlooked that the limitations
of adaptive techniques for the selection of change detection thresholds have hampered the
development of a fully automatic change detection approach. Thus alternative adaptive
approaches based on synergic use of multi-sensor satellite data have been proposed [29].

In the last few years, the complementarity of radar and optical information has
fostered the development of multisensory classification procedures that exploit both sources
simultaneously [30]. This has led to numerous successes in the integrated use of SAR and
multispectral optical sensors for an effective and efficient extraction of volcano-related
features [29]. This exceptional combination of pressing challenges and abundant data is
leading to the growing use of data-driven approaches, as well as machine learning (ML)
models, to face automatic classification problems. Machine learning employs a bottom-
up approach where classification algorithms learn relationships between input data and
output results as part of the model-building process, so ML can identify patterns and trends
buried in large volumes of data that are not evident to human experts [31,32].

Here, we propose a machine learning approach to automatically estimate the area of
active lava flows by using the images acquired by the SAR sensor on board of Sentinel-
1 mission (from ESA) and by optical and multispectral sensors of Landsat-8 missions
(from NASA and USGS) and Multi-Spectral Imager (MSI) on board of Sentinel-2 mission
(from ESA). In fact, machine learning provides the possibility for reliable and accurate
classification of remotely sensed imagery. The strengths of machine learning include the
ability to rapidly process enormous volumes of data and to map classes with very complex
characteristics without using explicit instructions, relying instead on trends and patterns.
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Machine learning algorithms build a mathematical model based on sample data, known as
“training data”. As new input data become available, this model can be used to make
predictions or decisions without human intervention [33,34].

We design a machine learning classifier for each data source and a machine learning
classifier for the whole heterogeneous available datasets. Then, when all the classifier
outcomes are retrieved, namely Sentinel-1, Sentinel-2, Landsat-8 and fused classifier, the fi-
nal outcome will result from the combination of both fused and per-source classifiers.
The reason behind that is to strengthen the complementarity as well as the discriminative
power of the per-source information. In fact, per-source features need to be discriminative
alone, i.e., independently from each other. Moreover, an alternative automatic approach is
proposed as a change detection algorithm to deal with SAR intensity images based on an
unsupervised K-means algorithm in order to select an opportune threshold.

We have used the machine learning classifiers to map lava flow emplacement during
two effusive eruptions occurred at Mount Etna, Italy, in December 2018 and at Fogo
Island, Cape Verde, from November 2014 to February 2015. These eruptive events were
chosen as case studies because lava flows posed major threats to people and property.
Moreover, both eruptions were well documented by satellite measurements that have
been extremely useful for monitoring the eruptive activity. The flow maps produced from
machine learning classifiers correspond well with the actual lava flow fields of both eruptive
events discriminating between pixels belonging to the lava flow and pixels belonging to
the background, exploiting all the available satellite data. This algorithm is implemented
in the Google Earth Engine (GEE), which is a cloud computing platform for environmental
data analysis from local to planetary scales, with fast access and processing of satellite data
from different missions [35].

2. Materials
2.1. Study Sites and Reference Data

The most recent eruptions at Mt. Etna and Fogo Island offered a dramatic demonstra-
tion of the volcanic hazards associated with lava flows and an excellent example of the
importance of remote sensing datasets for monitoring eruptive activity. Mt. Etna is one of
the most active volcanoes in the world, characterized by persistent explosive activity at the
summit craters and frequent effusive events along fissures located on its flanks. During the
past 400 years Etna has erupted over 60 times from flank vents [36], producing lava flows
that can extend for several kilometers. Flank eruptions present a major hazard to the
towns located around the volcano, especially when the eruptive vents open at very low
altitudes. The last eruption of Mount Etna occurred between 24 and 27 December 2018
(total duration of 4 days) from a fissure that opened on the high south-eastern flank [37].
Lava fountains and ash plumes accompanied the opening of the uppermost eruptive fis-
sure, causing disruption to Catania International Airport, and were followed by a quiet
lava effusion within the uninhabited Valle del Bove, a large depression on the east flank of
Mt. Etna. The final outline of the actual lava flow field (real area) was manually produced
through visual analysis of the image acquired by the PlanetScope satellite (from Planet
Labs Inc., San Francisco, CA, USA) on 29 December 2018 with a spatial resolution of 3 m
(Figure 1). We computed an areal extension of 0.88 km2. This will be considered as the true
lava flow value.

Fogo volcano is an island in the southwest end of the Cape Verde Archipelago, located
at ~800 km west of the coast of Western Africa. The Cape Verde Archipelago is of volcanic
origin, and Fogo is one of the youngest and most active volcanic islands. Over the past
500 years, around 27 eruptions have been documented with a mean interval of about
20 years [38]. The last effusive eruption started on 23 November 2014 and ended on
8 February 2015 (total duration of 78 days) [39]. The eruption produced a three-branch lava
flow that buried a considerable extent of cultivated land and overwhelmed two villages
on Fogo Island, causing approximately 1000 residents living around the volcano to be
evacuated and a local airport to be closed. The final outline of the actual lava flow field
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(real area) was manually extracted through visual analysis of the image captured by the
Pleiades satellites (from French Space Agency) on 20 June 2015 with a spatial resolution of
0.5 m (Figure 2). We calculated an areal extension of 4.8 km2. This will be considered as the
true lava flow value.
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Figure 1. Reference lava flow erupted during the 2018 eruption at Mt. Etna. The lava areal coverage
was extracted by the PlanetScope image acquired on 29 December 2018. North-East Crater (NEC),
Voragine (VOR), Bocca Nuova (BN), South-East Crater (SEC), and New South-East Crater (NSEC) are
the summit craters of Etna. Valle del Bove is the large depression on the eastern flank of the volcano.
This figure was generated using Google Earth.

Energies 2021, 14, x FOR PEER REVIEW 6 of 19 
 

 

 
Figure 2. Reference lava flow erupted during the 2014–2015 eruption at Fogo volcano. The lava 
areal coverage was extracted by the Pleiades image acquired on 20 June 2015. Chã das Caldeiras is 
the summit caldera, inside which the active cone of Pico do Fogo rises up. This figure was gener-
ated using Google Earth. 

2.2. Data Sources 
Sentinel-1 and Sentinel-2 satellite missions are part of the Copernicus programme of 

the European Space Agency (ESA). The Sentinel-1 constellation consists of two identical 
satellites launched in 2014 (Sentinel-1A) and 2016 (Sentinel-1B). Both satellites are 
equipped with C-band Synthetic Aperture Radar (SAR) instruments (frequency 
5.33 GHz, wavelength 5.6 cm), providing data in dual or single polarizations. Sentinel-1 
data are acquired in four different operational modes, namely Stripmap (SM), Interfer-
ometric Wide swath (IW), Extra Wide swath (EW) and Wave (WV) modes; different spa-
tial resolutions (from 10 m to 40 m) depending on the selected mode. Sentinel-1 (S1) im-
ages acquired in C-band IW mode, with dual polarization (VH and VV) in ascending or-
bit and a temporal resolution of 12 days, are made available at level-1C Ground Range 
Detected (GRD) by Google Earth Engine. These are already preprocessed based on the 
algorithms implemented by the Sentinel-1 Toolbox software [40], namely applied orbit 
files, GRD border noise removal, thermal noise removal, radiometric calibration, and 
terrain correction steps. 

Additionally, Sentinel-2 consists of a constellation of two identical satellites, Senti-
nel-2A was launched in 2015 and was followed by Sentinel-2B in 2017. The revisit fre-
quency of one satellite is 10 days, resulting in a revisit frequency of 5 days for the con-
stellation. Both satellites are equipped with a MultiSpectral Instrument (MSI) with 13 
bands in the visible, near infrared, and shortwave infrared part of the spectrum at spa-
tial resolutions of 10-20 m. Sentinel 2 (S2) images are made available at level-2A Surface 
Reflectance (SR) by Google Earth Engine. 

Landsat-8 is an Earth observation satellite launched in the frame of a joint NASA 
and USGS mission in 2013. It carries two sensors, namely Operational Land Imager 
(OLI) characterized by 9 spectral bands: in the visible, near infrared and shortwave in-
frared (spatial resolution of 30 m). In addition, it has a Panchromatic band at a spatial 
resolution of 15 m. The second sensor is Thermal Infrared Sensor (TIRS) with 2 bands of 
100 m in spatial resolution. Landsat-8 data are characterized by a high radiometric reso-
lution (16 bits), and the scenes cover 185 × 180 km, available at free of charges [41]. 
Landsat-8 (L8) images are made available as atmospherically corrected surface reflec-

Figure 2. Reference lava flow erupted during the 2014–2015 eruption at Fogo volcano. The lava areal
coverage was extracted by the Pleiades image acquired on 20 June 2015. Chã das Caldeiras is the
summit caldera, inside which the active cone of Pico do Fogo rises up. This figure was generated
using Google Earth.
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2.2. Data Sources

Sentinel-1 and Sentinel-2 satellite missions are part of the Copernicus programme
of the European Space Agency (ESA). The Sentinel-1 constellation consists of two iden-
tical satellites launched in 2014 (Sentinel-1A) and 2016 (Sentinel-1B). Both satellites are
equipped with C-band Synthetic Aperture Radar (SAR) instruments (frequency 5.33 GHz,
wavelength 5.6 cm), providing data in dual or single polarizations. Sentinel-1 data are
acquired in four different operational modes, namely Stripmap (SM), Interferometric Wide
swath (IW), Extra Wide swath (EW) and Wave (WV) modes; different spatial resolutions
(from 10 m to 40 m) depending on the selected mode. Sentinel-1 (S1) images acquired in
C-band IW mode, with dual polarization (VH and VV) in ascending orbit and a temporal
resolution of 12 days, are made available at level-1C Ground Range Detected (GRD) by
Google Earth Engine. These are already preprocessed based on the algorithms imple-
mented by the Sentinel-1 Toolbox software [40], namely applied orbit files, GRD border
noise removal, thermal noise removal, radiometric calibration, and terrain correction steps.

Additionally, Sentinel-2 consists of a constellation of two identical satellites, Sentinel-2A was
launched in 2015 and was followed by Sentinel-2B in 2017. The revisit frequency of
one satellite is 10 days, resulting in a revisit frequency of 5 days for the constellation.
Both satellites are equipped with a MultiSpectral Instrument (MSI) with 13 bands in the
visible, near infrared, and shortwave infrared part of the spectrum at spatial resolutions of
10–20 m. Sentinel 2 (S2) images are made available at level-2A Surface Reflectance (SR) by
Google Earth Engine.

Landsat-8 is an Earth observation satellite launched in the frame of a joint NASA
and USGS mission in 2013. It carries two sensors, namely Operational Land Imager (OLI)
characterized by 9 spectral bands: in the visible, near infrared and shortwave infrared
(spatial resolution of 30 m). In addition, it has a Panchromatic band at a spatial resolution
of 15 m. The second sensor is Thermal Infrared Sensor (TIRS) with 2 bands of 100 m in
spatial resolution. Landsat-8 data are characterized by a high radiometric resolution (16
bits), and the scenes cover 185 × 180 km, available at free of charges [41]. Landsat-8 (L8)
images are made available as atmospherically corrected surface reflectance from the OLI
and TIRS sensors by Google Earth Engine. L8 TIRS bands are already resampled using
cubic convolution to 30 m in GEE.

Since we want to highlight the main changes due to the lava flow emplacement,
each satellite dataset is made by selected images acquired in two time intervals, namely be-
fore the eruption starts (pre-eruptive group) and after the eruption ends (post-eruptive
group) for each case of study.

3. Methods

The proposed ML approach relies on three main steps as it is shown in Figure 3:

• Input feature preparation, features are opportunely extracted from each available
satellite data source among S1, S2 and L8, and a further features vector is obtained by
concatenating the previously extracted features.

• Classification, for each of the previously defined features vector, a ML classifier is
opportunely designed depending on the input data source.

• Combination, the outcomes coming from each classifier are merged to provide a final
lava flow map.
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3.1. Input Feature Preparation

In the first step, images are initially preprocessed for each data source; in particular,
S1 data is filtered from speckle noise by using the algorithm proposed in [42] and all the
data are projected to UTM/WGS84 reference system. For each data source, we chose the
spectral bands to be used to map lava flows; in particular, for L8 we considered both TIRS
bands and SWIR bands images. Regarding S2, previous works use either VIS, NIR, and
shaded topographic information (especially relevant in VIS bands) for recent lava flow
mapping [14] or SWIR for fresh lava flow mapping [11]. In this analysis, both 10-m spatial
resolution bands (VIS and NIR bands) and two 20-m SWIR bands (1.61 µm and 2.2 µm) are
considered to map the overall lava flow field.

Successively, pre-eruptive and post-eruptive images are selected. For S1 and L8 data,
the most recent available image from the pre-eruptive group and the least recent from
the post-eruptive group are selected. For S2, we have considered, as in [14], one pre- and
two post-eruptive images, but a modification was performed to make the algorithm more
robust. The first available image after the eruption accounting for the fresh lava flow is
considered as one of the post-eruptive images (post). Then, we use multiple images with
partial covering taken closer to the eruption rather than a single perfectly clear image taken
much before or much later the eruption as pre-eruptive image (pre) and post-eruptive
image (post2), respectively so that defective pixels in one image may be compensated by
clear pixels in the other. Thus, pre and post2 are obtained by averaging the values of the
5 most recent available images from the pre-eruptive group and the 5 least recent from the
post-eruptive group (excluding the post image already used) to reduce any disturbance
due to clouds or ice; considering average images allows to reduce external noises.

Finally, images are combined to generate input features to be used in the next step.
For S1 and L8, we subtract the pre eruptive image from the post eruptive image to build
the difference image as input feature, while S2 input feature is obtained by concatenat-
ing the pre- and post-eruptive images, i.e., 1 × (N × 3) with N = 6 number of bands,
namely 1 × 18 vector. Moreover, the features obtained for all the available data sources are
concatenated as fused features to be used as a further classifier input.

3.2. Classification

In the second step, a classifier for each extracted set of features is used, thus four
classifiers are implemented, namely three classifiers for each data source and one main
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classifier for the fused features. At this point, the un-supervised K-means technique is
used as a change detection algorithm for the S1 feature. The K-means algorithm classifies
the input data in a pre-defined number of classes, two classes in our case, depending on
their similarity in terms of their Euclidean distance. This algorithm does not need a priori
labeling of classes being useful as adaptive threshold technique. Consequently, we adopted
this approach to detect changes in intensity in SAR images where “lava” and “background”
are the two classes, i.e., n = 2, identified by the K-means algorithm. On the other hand,
since more complex patterns involving multi input variables can be better caught by other
kinds of classifiers such as Support Vector Machines (SVM), this technique is adopted to
classify the remaining data sources, S2 and L8, and the extracted fused data. SVM aims
at achieving the best hyperplane or set of hyperplanes separating two classes in order
to maximize the distance between their training points (margin). In fact, the larger the
margin, the lower the generalization error [43]. The design parameters for SVM are the
Kernel type, γ that is the ‘spread’ of the Kernel and therefore of the decision region, and the
cost c that is the penalty for misclassifying a data point [44]. In particular, a Radial Basis
Function (RBF) kernel is used in our cases with gamma parameter γ = 0.5, and cost c = 10.
As a training dataset for the SVM classifiers, a small area belonging to the lava flow field
is manually drawn in GEE, namely 8% at maximum of the overall area. In particular,
small lava portions belonging to each of the two phases of the lava flow, namely active and
cooling phase, must be considered.

Finally, a K-means classifier is designed to classify S1 input data, three SVM classifiers
are designed to classify S2, L8 and the fused satellite data. It is worth noticing that a
K-means algorithm could also be used for L8 data, but since TIR trend is predominant
when analyzing an image close to the eruptive event, some underlying pattern accounting
for the SWIR bands contribution could be hidden thus worsening the classifier performance.
A final post-processing step is performed for each classifier in order to remove isolated
pixels from the foreground from each binary map.

3.3. Combination

In the third step, the outcomes from all the classifiers are leveraged to perform the final
lava classification. In particular, the summation of all the weighted contributions is per-
formed and all the weights are set to 1, except the fusion outcome that is set to 2 to enforce
the discriminative power of the per-source learned features while privileging the fused fea-
tures in the combination. Then, a pixel is classified as lava if the combined value is greater
than 1, i.e., at least two classifiers outcome must be “lava”, as “background” otherwise.

4. Results
4.1. 2018 Etna Eruption

For the first case study, the closest pre-eruptive and post-eruptive images available,
and not affected by clouds, for each data source are shown in Table 2. S1 input data is
available right after the lava flow is erupted, on 28 December 2018 and it is used to compute
the intensity difference image. The input data is thus made by 1 timestamps × 2 Bands,
namely ‘VV’ and ‘VH’. As previously stated, the K-means algorithm does not need a
training dataset. The outcome of the K-means classifier is shown in Figure 4a.
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Table 2. Satellite dataset used for the 2018 Etna eruption.

Mission Sensor Acquisition Date

Sentinel-1 SAR 22 December 2018
Sentinel-1 SAR 28 December 2018
Sentinel-2 MSI 6 December 2018
Sentinel-2 MSI 11 December 2018
Sentinel-2 MSI 11 December 2018
Sentinel-2 MSI 16 December 2018
Sentinel-2 MSI 24 December 2018
Sentinel-2 MSI 29 December 2018
Sentinel-2 MSI 8 January 2019
Sentinel-2 MSI 8 January 2019
Sentinel-2 MSI 15 January 2019
Sentinel-2 MSI 15 January 2019
Sentinel-2 MSI 25 January 2019
Landsat-8 OLI/TIRS 9 November 2018
Landsat-8 OLI/TIRS 27 December 2018
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S2 input data is made by 3 timestamps × 6 Bands for S2, thus each pixel of the input
image will be 1 × (3 × 6) feature vector and it will be given as input to the SVM classifier.
The outcome of the SVM classifier is shown in Figure 4b.

L8 images are available close to the eruptive event, thus allowing to get a good map
of the lava flow. A difference image is computed, and each pixel of the input image will be
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a 1 × (4) feature vector and it will be given as input to an SVM classifier. The outcome of
the SVM classifier is shown in Figure 4c.

For the data fusion case, input data is made by the concatenation of all the previous
satellite data, namely S1, S2 and L8. Thus, each pixel will be characterized by 1 × (2(S1)
+ 18(S2) + 4(L8)) = 1 × 24 data points. The outcome of the SVM classifier is shown in
Figure 4d.

Finally, all the classifiers’ outcomes are combined such that when each pixel value
increases greater than 1, the pixel is considered as belonging to the lava flow. The combined
lava flow is shown in Figure 5. Table 3 shows the areal extent of lava flows for the
investigated eruption extracted from each satellite source.
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Table 3. Areal extent of lava flow field of the 2018 Etna eruption estimated by machine learning
classifiers using S1, S2, L8, fused and combined data. The performance indices ACC, PPV, and TPR,
ranging between 0 (worst case) and 1 (best case), quantify the goodness of fit with the actual lava
flow area.

Data Area [km2] ACC PPV TPR

Sentinel-1 0.94 0.74 0.83 0.86
Sentinel-2 0.75 0.83 0.94 0.87
Landsat-8 0.98 0.82 0.87 0.93

Fused 1.00 0.84 0.89 0.95
Combined 1.00 0.85 0.88 0.97

4.2. 2014–2015 Fogo Eruption

For the second case of study, Sentinel-2 data were not available, thus only S1 and
L8 data are used. The closest pre-eruptive and post-eruptive images available, and not
affected by clouds, for each data source are shown in Table 4. S1 input data is made by
an intensity difference image for each available band, only ‘VV’ in this case. Thus, the
input data will be made by 1 time stamp x 1 Band. As previously stated, the K-means
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algorithm does not need a training dataset. The outcome of the K-means classifier is shown
in Figure 6a.

Table 4. Satellite dataset used for the 2014–2015 Fogo eruption.

Mission Sensor Acquisition Date

Sentinel-1 SAR 3 November 2014
Sentinel-1 SAR 02 January 2015
Landsat-8 OLI/TIRS 23 October 2014
Landsat-8 OLI/TIRS 11 January 2015
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L8 images are not available close to the end of the eruptive activity, the first available
image day after the eruption ends thus few lava flow sections are still observable from L8.
The outcome of the SVM classifier is shown in Figure 6b.

For the fused dataset, input is made by the concatenation of all the previous satellite
data, namely S1 and L8. Thus, each pixel will be characterized by 1 × (1(S1) + 4(L8)) =
1 × 5 data points. The outcome of the SVM classifier is shown in Figure 6c. The final
combined outcome is shown in Figure 7. Table 5 shows the areal extent of lava flows for
the investigated eruption extracted from each classifier.

Energies 2021, 14, x FOR PEER REVIEW 14 of 19 
 

 

 
Figure 7. Combined outcome from all the classifiers: true positive (red area), false positive (yellow 
area) and false negative (blue area). Chã das Caldeiras is the summit caldera, inside which the ac-
tive cone of Pico do Fogo rises up. This figure was generated using Google Earth. 

Table 5. Areal extent of lava flow field of the 2014–2015 Fogo eruption estimated by machine 
learning classifiers using S1, L8, fused and combined data. The performance indices ACC, PPV, 
and TPR, ranging between 0 (worst case) and 1 (best case), quantify the goodness of fit with the 
actual lava flow area. 

Data  Area [km2] ACC PPV TPR 
Sentinel-1 2.54 0.70 0.97 0.71 
Landsat-8 1.60 0.57 0.98 0.57 

Fused 4.34 0.92 0.98 0.93 
Combined 4.34 0.92 0.98 0.93 

4.3. Performance Indices 
In order to evaluate our ability to automatically map lava flows by using machine 

learning classifiers, we compare the areal dimensions of calculated (test area) and actual 
lava flow fields. The areal extent of the actual lava flow field (real area) for each case of 
study are manually retrieved. To establish the reliability of our results, we computed 
three different performance indices, which have been widely employed to quantify the 
goodness of fit between real and calculated lava flow areas [39,45,46]. They are defined 
as [14]: 
• accuracy (ACC) = [A(test ∩ real)/A(test ∪ real)]1/2 
• precision (also known as the positive predictive value, PPV) = [A(test ∩ re-

al)/A(test)]1/2 
• sensitivity (also known as the true positive rate, TPR) = [A(test ∩ real)/A(real)]1/2 

ACC evaluates the difference in emplacement between the diverse lava flow fields, 
where A(test ∩ real) and A(test ∪ real) are the areas of the intersection and union be-
tween the calculated and actual lava flows, respectively. PPV measures the percentage of 
calculated lava flow field covered by the actual lava flows. TPR evaluates the percentage 
of actual lava flow field covered by the calculated lava flows. 

The lower and upper limits for the three performance indices are 0 and 1. A fitting 
score equal to 1 indicates a complete overlap, i.e., the calculated area coincides totally 
with the actual lava flow field. On the contrary, a fitting score equal to 0 corresponds to 
the maximum error, i.e., lack of common areas between the calculated and actual lava 

Figure 7. Combined outcome from all the classifiers: true positive (red area), false positive (yellow
area) and false negative (blue area). Chã das Caldeiras is the summit caldera, inside which the active
cone of Pico do Fogo rises up. This figure was generated using Google Earth.

Table 5. Areal extent of lava flow field of the 2014–2015 Fogo eruption estimated by machine learning
classifiers using S1, L8, fused and combined data. The performance indices ACC, PPV, and TPR,
ranging between 0 (worst case) and 1 (best case), quantify the goodness of fit with the actual lava
flow area.

Data Area [km2] ACC PPV TPR

Sentinel-1 2.54 0.70 0.97 0.71
Landsat-8 1.60 0.57 0.98 0.57

Fused 4.34 0.92 0.98 0.93
Combined 4.34 0.92 0.98 0.93

4.3. Performance Indices

In order to evaluate our ability to automatically map lava flows by using machine
learning classifiers, we compare the areal dimensions of calculated (test area) and actual
lava flow fields. The areal extent of the actual lava flow field (real area) for each case of
study are manually retrieved. To establish the reliability of our results, we computed three
different performance indices, which have been widely employed to quantify the goodness
of fit between real and calculated lava flow areas [39,45,46]. They are defined as [14]:

• accuracy (ACC) = [A(test ∩ real)/A(test ∪ real)]1/2

• precision (also known as the positive predictive value, PPV) = [A(test∩ real)/A(test)]1/2

• sensitivity (also known as the true positive rate, TPR) = [A(test ∩ real)/A(real)]1/2
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ACC evaluates the difference in emplacement between the diverse lava flow fields,
where A(test ∩ real) and A(test ∪ real) are the areas of the intersection and union between
the calculated and actual lava flows, respectively. PPV measures the percentage of calcu-
lated lava flow field covered by the actual lava flows. TPR evaluates the percentage of
actual lava flow field covered by the calculated lava flows.

The lower and upper limits for the three performance indices are 0 and 1. A fitting
score equal to 1 indicates a complete overlap, i.e., the calculated area coincides totally
with the actual lava flow field. On the contrary, a fitting score equal to 0 corresponds
to the maximum error, i.e., lack of common areas between the calculated and actual
lava flows. The comparison between the ACC, PPV, and TPR gives insights on how the
calculated emplacements change with respect to the actual areas. Precisely, the testing
area underestimates the actual one if PPV is higher than ACC, while it overestimates if
TPR is greater than ACC [47]. The results of the performance indices ACC, PPV and TPR
calculated for 2018 Mt. Etna and 2014–2015 Fogo Island eruptions are shown in Tables 3
and 5, respectively.

5. Discussion

Except for one case, the values for indices ACC, PPV, and TPR are always higher than
0.70 for all the classifiers for both the eruptions considered. This means that the actual
lava flow fields are well reproduced, and each classifier can give a positive contribution
to the lava flow mapping. Only for the L8 classifier in Fogo eruption, the index ACC has
a low value of 0.57. This is, probably, due to the L8 image acquired on 11 January 2015,
when the main effusive activity was over for several days already. In fact, since the end of
December 2014, no evident growth of the lava flow field was observed, even if the eruption
was declared officially over on 8 February 2015.

As it is expected, although each single classifier is able to reproduce good portions
of the lava flow field ranging from ACC = 0.74 to ACC = 0.83 for the Etna lava flow and
ACC = 0.70 for S1 for the Fogo lava flow, both the cases of study show that the fused
and the combined mapping are more accurate than the single satellite data classifiers,
thus confirming that using all the available information in our proposed machine learning
framework allows to get a better knowledge of the lava flow extension. In particular, it is
worth to notice that combining all the classifier outcomes slightly increases the accuracy
with respect to using only the fused classifier when all the data sources are taken into
account, e.g., Etna case of study. On the other hand, its value remains the same as the fused
ones when fewer data sources are considered, e.g., Fogo case of study.

For the Etna case of study, we can notice that both the single S2 and the combined
final classifiers achieve better results in terms of performance indices with respect to the
ones shown in [14], i.e., ACC = 0.83, PPV = 0.79, and TPR = 0.84. Results show that the
information provided by SAR intensity images is valuable even though S1 classifier alone
may underestimate the lava flow area. This underestimation was already reported in [29],
where it is shown that SAR intensity only under-estimates the lava total area with respect
to the one estimated from the optical and multispectral datasets during Fogo eruption.
The reason behind that is related to different aspects. Since the detected lava flow map
mainly reflects change in roughness of the lava surface, these may be difficult to be detected
either when a new lava flow is imposed in an older lava flow field since it is characterized
by similar textures or when the observed lava flow is characterized by a pahoehoe smooth
morphology. In particular, the lava flow erupted at Fogo has been shown to be made by
both ‘a ‘ā (rough) and pahoehoe (smooth) morphologies [48]. Thus, in this case, the lava
flow field, extracted by only using S1, is mainly related to the ‘a‘ā (rough) lava flow portion
as can be verified by comparing it with the ‘a‘ā flow map in [48]. The pahoehoe (smooth)
lava flow section can then be retrieved by subtracting the previously extracted ‘a‘ā lava
flow from the overall lava flow field obtained by using our ML technique.

It is worth noting that in this case, the use of SAR intensity images appears crucial
to retrieve an estimate of the overall lava flow field since S2 data are missing and only a
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L8 image is available far after the eruption ends. Thus, although lava flow cannot be fully
retrieved by using SAR intensity signals since it only measures changes in roughness of
the monitored surface, its contribution to lava flow mapping when combined with other
satellite sensors appears to be fundamental.

Thus, without adopting any other source of information but free available ones, a good
estimate of the lava flow has been obtained with an accuracy of ACC = 0.92 for the Fogo
study case and ACC = 0.85 for the Etna study case. Furthermore, it is a great advantage
having the possibility to use the first available post eruptive S1 image right after lava flow
emission regardless of the meteorological condition, but at the same time being able to
compensate for S1 limitations by using also optical satellite data.

Adopting our machine learning-based approach allows avoiding the difficulties of
mapping on location with traditional field surveys and obtaining an extraordinary view of
active lava flows in an automatic way. On one hand, manually retrieving a lava flow map
from satellite images is time-consuming thus this machine learning approach appears to be
a valuable alternative. It can be run on a common laptop with processing time of a few
minutes. S1 lava flow emplacement is automatically detected by simply using a K-means
unsupervised clustering approach thus overcoming the problem of choosing an opportune
fixed threshold. A short time is needed for labelling, since the training area can be chosen
by selecting a small region belonging to the lava flow and to the background that can be just
drawn in GEE. On the other hand, the reduced spatial resolution of the adopted satellite
data leads to overestimation of the actual lava flow field and, consequently, to lower quality
of the calculated lava flow map. However, future developments to improve the overall
performance could be including further satellite data, such as InSAR data that are not
available in GEE at this time.

6. Conclusions

Our objective was to develop a general method to estimate the areal coverage of the
newly erupted lava solely by using freely available and open source data from space-
borne instruments. We have introduced a machine learning approach to rapidly map lava
flows exploiting all the freely available information coming from Sentinel-1, Sentinel-2,
and Landsat-8 satellite. We found that the joint analysis of radar and multispectral satellite
data provides a superb means of documenting lava flow activity at Etna and Fogo volcanoes.
By exploiting both data sources simultaneously, it is possible to map new lava flows with
high accuracy.

Our approach relies on a set of machine learning classifiers, one for each satellite
dataset and one for all the satellite datasets together, which are able to discriminate between
lava and background pixels. Their outcomes are then combined to get a final lava flow
map. We used two machine learning techniques, namely the unsupervised K-means
to deal with Sentinel-1 SAR intensity data and a supervised Support Vector Machine
to deal with Sentinel-2 MSI and Landsat-8 OLI and TIRS data. In particular, a simple
alternative approach as a change detection algorithm has been implemented for Sentinel-1
SAR intensity data that does not need any a-priori information.

We investigated two eruptions characterized by different duration and features,
namely the 2018 eruption at Mount Etna that lasted 4 days and the 2014–2015 eruption
at Fogo Island that lasted 78 days. The results show that the combined outcomes are in
good agreement with the targets for both eruptions. It is worth noting that the reference
lava flow maps used to validate our approach have been manually produced by using
very-high spatial resolution data from PlanetScope at Mt. Etna and Pleiades at Fogo Island,
which are not freely-available and quite expensive.

Although some isolated pixels are wrongly classified as belonging to the lava flow,
our machine learning approach is able to correctly identify the main lava flow body.
This classifier produces good results, especially when the available radar and multispectral
images are recorded within a few days that the lava emission ends; after this amount of
time the performances get worse.
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Lava-flow maps produced adopting this approach can be used to facilitate field
mapping, giving insights into emplacement processes, and to improve monitoring and
assessment of lava flow hazards. We have shown that both the merged and discriminative
information provided by radar and the optical satellite images may allow to distinguish
among lava flow morphologies, e.g., ‘a‘ā and pahoehoe. This is especially important when
considering that pahoehoe lava flows are often related to lava tubes formation, which is
fundamental to evaluate and detect the development of potential devastating lava flows.

Finally, it is worth recalling that our machine learning classifier is implemented in
GEE so it can be readily accessible. The potentiality of this approach relies on the possibility
to get the most from the wide variety of available data sources, overcoming the intrinsic
limitations of the single satellite sensor.
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