Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/14019
DC FieldValueLanguage
dc.date.accessioned2020-12-17T11:02:06Z-
dc.date.available2020-12-17T11:02:06Z-
dc.date.issued2021-01-18-
dc.identifier.urihttp://hdl.handle.net/2122/14019-
dc.description.abstractA statistical analysis of explosive eruptive events can give important clues on the behaviour of a volcano for both the time- and size-domains, producing crucial information for hazards assessment. In this paper, we analyse in these domains an up-to-date catalogue of eruptive events at Galeras volcano, collating data from the Colombian Geological Survey and from the Smithsonian Institution. The dataset appears to be complete, stationary and consisting of independent events since 1820, for events of magnitude ≥2.6. In the time-domain, Inter-Event Times are fitted by various renewal models to describe the observed repose times. On the basis of the Akaike Information Criterion, the preferred model is the Lognormal, with a characteristic time scale of ∼1.6 years. However, a tendency for the events to cluster in time into ”eruptive cycles” is observed. Therefore, we perform a cluster analysis, to objectively identify clusters of events: we find three plausible partitions into 6, 8 and 11 clusters of events with magnitude ≥ 2.6 the 6-cluster partition being the preferred. The Inter-Event Times between cluster onsets (inter-cluster) and between events belonging to the same cluster (intra-cluster) are also modelled by renewal models. For inter-cluster data, the preferred model is the Brownian Passage Time, describing a periodical occurrence (mean return time ∼ 36 years) perturbed by a Gaussian noise. For the intra-cluster explosions, the preferred model is the Lognormal, with a characteristic time scale of ∼ 0.9 years. In the size-domain, we analyse only single events, due to the low number of clusters. Considering two independent parts of the catalogue, we cannot reject the null hypothesis of the erupted mass being described by a power law, implying no characteristic eruption size. Finally, looking for time- and size-predictability, we find a significant inverse linear relationship between the logarithm of the erupted mass during a cycle and the time to the subsequent one. These results suggest that, presently, Galeras is still in the eruption cycle started in 2007; a new eruptive cycle may be expected in a few decades, unless the present cluster resumes to activity with magnitude ≥2.6.en_US
dc.description.sponsorshipThis research has been partially funded by project EXACT (Progetto 29 di Ricerca Libera INGV 2019 Delibera 53/2020).en_US
dc.language.isoEnglishen_US
dc.publisher.nameFrontiersen_US
dc.relation.ispartofFrontiers in Earth Scienceen_US
dc.relation.ispartofseries/8(2021)en_US
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States-
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/-
dc.subjectstochastic modellingen_US
dc.subjectGalerasen_US
dc.subjectVolcanic eruptionen_US
dc.subjectClustersen_US
dc.titleStochastic modelling of explosive eruptive events at Galeras Volcano, Colombiaen_US
dc.typearticleen_US
dc.description.statusPublisheden_US
dc.type.QualityControlPeer-revieweden_US
dc.description.pagenumber583703en_US
dc.identifier.URLhttps://www.frontiersin.org/articles/10.3389/feart.2020.583703/abstracten_US
dc.subject.INGV04.08. Volcanologyen_US
dc.identifier.doi10.3389/feart.2020.583703en_US
dc.relation.referencesAki, K. (1965). Maximum likelihood estimate of b in the formula log (n) = a bm and its confidence limits. Bull. Earthquake Res. Inst. Univ. Tokyo 43, 237–239. Google Scholar Al-Zoub, M., and Al Rawi, M. (2008). An efficient approach for computing silhouette coefficients. J. Comput. Sci. 43, 252–255. doi:10.3844/jcssp.2008.252.255 CrossRef Full Text | Google Scholar Bain, L. J. (1978). Statistical analysis of reliability and life-testing models, theory and methods. New York: Marcel Dekker. Google Scholar Bebbington, M. S., and Cronin, S. (2011). Spatio-temporal hazard estimation in the auckland volcanic field, New Zealand, with a new event-order model. Bull. Volcanol. 73, 55–72. doi:10.1007/s00445-010-0403-6 CrossRef Full Text | Google Scholar Bebbington, M. S. (2008). Incorporating the eruptive history in a stochastic model for volcanic eruptions. J. Volcanol. Geoth. Res. 175, 325–333. doi:10.1016/j.jvolgeores.2008.03.013 CrossRef Full Text | Google Scholar Bebbington, M. S., and Lai, C. D. (1996). On nonhomogeneous models for volcanic eruptions. Math. Geol. 28, 585–600. CrossRef Full Text | Google Scholar Bebbington, M. S. (2012). Models for temporal volcanic hazard. Statistics in Volcanology 1, 1–24. 10.5038/2163-338X.1.1. Google Scholar Bebbington, M. S. (2010). Trends and clustering in the onsets of volcanic eruptions. J. Geophys. Res. 115, B01203. doi:10.1029/2009JB006581 CrossRef Full Text | Google Scholar Bevilacqua, A., Flandoli, F., Neri, A., Isaia, R., and Vitale, S. (2016). Temporal models for the episodic volcanism of campi flegrei caldera (Italy) with uncertainty quantification. J. Geophys. Res. Solid Earth 121, 7821–7845. doi:10.1002/2016JB013171 CrossRef Full Text | Google Scholar Bolshakova, N., and Azuaje, F. (2003). Cluster validation techniques for genome expression data. Signal Process. 83, 825–833. doi:10.1016/S0165-1684(02)00475-9 CrossRef Full Text | Google Scholar Bonadonna, C., and Costa, A. (2013). Plume height, volume, and classification of explosive volcanic eruptions based on the weibull function. Bull. Volcanol. 75, 742. doi:10.1007/s00445-013-0742-1 CrossRef Full Text | Google Scholar Burt, M. L., Wadge, G., and Scott, W. A. (1994). Simple stochastic modelling of the eruption history of a basaltic volcano: nyamuragira, Zaire. Bull. Volcanol. 56, 87–97. 10.1007/BF00304104. CrossRef Full Text | Google Scholar Calvache, M. L., Cortés, G. P., and Williams, S. N. (1997). Stratigraphy and chronology of the Galeras volcanic complex, Colombia. J. Volcanol. Geotherm. Res. 77, 5–19. doi:10.1016/S0377-0273(96)00083-2 CrossRef Full Text | Google Scholar Calvache, V. M. L. (1990). Geology and volcanology of the recent evolution of Galeras Volcano, Colombia. Master’s thesis. Baton Rouge: Louisiana State University. Google Scholar Cepeda, H. (2020). Quinientos años de documentacioÌn histoÌrica de actividad del volcaÌn Galeras: escenarios eruptivos (Servicio GeoloÌgico Colombiaon). Chen, G., Jaradat, S. A., Banerjee, N., Tanaka, T. S., Ko, M. S. H., and Zhang, M. Q. (2002). Evaluation and comparison of clustering algorithms in analyzing es cell gene expression data. Stat. Sin. 241–262. Google Scholar Coles, S., and Sparks, R. (2006). “Extreme value methods for modeling historical series of large volcanic magnitudes,” in Statistics in Volcanology. Editors H. Mader, S. Coles, C. Connor, and L. Connor (London: Geological Society IAVCEI Publications), 47–56. Google Scholar Connor, C. B., Sparks, R. S. J., Mason, R. M., and Bonadonna, C. (2003). Exploring links between physical and probabilistic models of volcanic eruptions: the soufriere hills volcano, Montserrat. Geophys. Res. Lett. 30, 1701. doi:10.1029/2003GL017384 CrossRef Full Text | Google Scholar Conway, F. M., Connor, C. B., Hill, B. E., Condit, C. D., Mullaney, K., and Hall, C. M. (1998). Recurrence rates of basaltic volcanism in sp cluster, san francisco volcanic field, Arizona. Geology 26, 655–658. doi:10.1130/0091-7613(1998)026 (0655:RROBVI) 2.3.CO;2 CrossRef Full Text | Google Scholar Cronin, S., Bebbington, M., and Lai, C. (2001). A probabilistic assessment of eruption recurrence on taveuni volcano, Fiji. Bull. Volcanol. 63, 274–288. doi:10.1007/s004450100144 CrossRef Full Text | Google Scholar DANE (2011). Estimación y proyección de población nacional, departamental y municipal total por área 1985-2020. Tech. Rep. Bogotá: Departamento Administrativo Nacional de Estadística. Google Scholar De la Cruz-Reyna, S. (1991). Poisson-distributed patterns of explosive eruptive activity. Bull. Volcanol. 54, 57–67. CrossRef Full Text | Google Scholar Deligne, N., Coles, S., and Sparks, R. (2010). Recurrence rates of large explosive volcanic eruptions. J. Geophys. Res. 115, B06203. doi:10.1029/2009JB006554 CrossRef Full Text | Google Scholar Espinoza, B. A. (1988). Actividad de1 volcán Galeras en épocas históricas. Tech. Rep. 80 [in Spanish]. Google Scholar Furlan, C. (2010). Extreme value methods for modelling historical series of large volcanic magnitudes. Stat. Model. Int. J. 10, 113–132. doi:10.1177/1471082X0801000201 CrossRef Full Text | Google Scholar Garcia-Aristizabal, A., Bucchignani, E., and Manzi, M. P. (2017). Patterns in climate-related parameters as proxy for rainfall deficiency and aridity: application to Burkina Faso. ASCE-ASME J. Risk Uncertain. Eng. Syst. A. 3, A4016001. doi:10.1061/AJRUA6.0000860 CrossRef Full Text | Google Scholar Garcia-Aristizabal, A., Marzocchi, W., and Fujita, E. (2012). A Brownian model for recurrent volcanic eruptions: an application to Miyakejima volcano (Japan). Bull. Volcanol. 74, 545–558. doi:10.1007/s00445-011-0542-4 CrossRef Full Text | Google Scholar Garcia-Aristizabal, A., Selva, J., and Fujita, E. (2013). Integration of stochastic models for long-term eruption forecasting into a Bayesian event tree scheme: a basis method to estimate the probability of volcanic unrest. Bull. Volcanol. 75, 1–13. doi:10.1007/s00445-013-0689-2 CrossRef Full Text | Google Scholar Global Volcanism Program [Dataset] (2013). Version. 4.9.1. “Galeras (351080),” in Volcanoes of the World. Editor E. Venzke (Washington, DC: Smithsonian Institution). Google Scholar Gutenberg, R., and Richter, C. (1944). Frequency of earthquakes in California. Bull. Seismol. Soc. Am. 34, 185–188. Google Scholar Hurtado Artunduaga, A. D., and Cortés Jiménez, G. P. (1997). Third version of the hazard map of Galeras Volcano, Colombia. J. Volcanol. Geoth. Res. 77, 89–100. doi:10.1016/s0377-0273(96)00088-1 CrossRef Full Text | Google Scholar INGEOMINAS (2010). Technical Reports. Resumen de actividad del volcan galeras del 29 de diciembre de 2009 al 4 de enero de 2010. Observatorio vulcanológico Y sismológico de pasto resumen. INGEOMINAS. Google Scholar INGEOMINAS (2005). Technical Reports. Volcán Galeras Actividad histórica. INSTITUTO COLOMBIANO DE GEOLOGIA Y MINERIA INGEOMINAS. Google Scholar Kaufman, L., and Rousseeuw, P. J. (2008). Finding Groups in Data: An Introduction to Cluster Analysis. John Wiley & Sons. Google Scholar Klein, F. (1982). Patterns of historical eruptions at Hawaiian volcanoes. J. Volcanol. Geoth. Res. 12, 1–35. doi:10.1016/0377-0273(82)90002-6 CrossRef Full Text | Google Scholar Lilliefors, H. (1969). On the Kolmogorov-smirnov test for the exponential distribution with mean unknown. J. Am. Stat. Assoc. 64, 387–389. CrossRef Full Text | Google Scholar MacQueen, J. (1967). “Some methods for classification and analysis of multivariate observations,” in Proceedings of the fifth berkeley symposium on mathematical statistics and probability. Berkeley, California: University of California Press, Vol. 1, 281–297. Google Scholar Marzocchi, W., and Sandri, L. (2003). A review and new insights on the estimation of the b -value and its uncertainty. Ann. Geophys. 46, 1271–1282. doi:10.1002/2016JB013054 CrossRef Full Text | Google Scholar Marzocchi, W., Sandri, L., Heuret, A., and Funiciello, F. (2016). Where giant earthquakes may come. J. Geophys. Res. Solid Earth 121, 7322–7336. doi:10.1002/2016JB013054 CrossRef Full Text | Google Scholar Marzocchi, W., and Zaccarelli, L. (2006). A quantitative model for time-size distribution of eruptions. J. Geophys. Res. 111, B04204. doi:10.1029/2005JB003709 CrossRef Full Text | Google Scholar Mason, B., Pyle, D., and Oppenheimer, C. (2004). The size and frequency of the largest explosive eruptions on earth. Bull. Volcanol. 66, 735–748. doi:10.1007/s00445-004-0355-9 CrossRef Full Text | Google Scholar Massaro, S., Costa, A., Sulpizio, R., Coppola, D., and Capra, L. (2019). Cyclic activity of the fuego de colima volcano (Mexico): insights from satellite thermal data and nonlinear models. Solid Earth 10, 1429–1450. doi:10.5194/se-10-1429-2019 CrossRef Full Text | Google Scholar Melnik, O., and Costa, A. (2014). “Dual chamber-conduit models of non-linear dynamics behaviour at soufrière hills volcano,” in The eruption of Soufriere Hills volcano, Montserrat from 2000 to 2010. Editors G. Wadge, R. Robertson, and B. Voight (London: Geological Society of London), Chap. 3, Vol. 39 of 5, 61–69. CrossRef Full Text | Google Scholar Mendoza-Rosas, A., and la Cruz-Reyna, S. D. (2008). A statistical method linking geological and historical eruption time series for volcanic hazard estimations: applications to active polygenetic volcanoes. J. Volcanol. Geoth. Res. 176, 277–290. 10.1016/j.jvolgeores.2008.04.005. CrossRef Full Text | Google Scholar Mulargia, F., Tinti, S., and Boschi, E. (1985). A statistical analysis of flank eruptions on Etna volcano. J. Volcanol. Geoth. Res. 23, 263–272. CrossRef Full Text | Google Scholar Newhall, C., and Self, S. (1982). The Volcanic Explosivity Index (VEI): an estimate of explosive magnitude for historical volcanism. J. Geophys. Res. 87, 1231–1238. CrossRef Full Text | Google Scholar Papale, P. (2018). Global time-size distribution of volcanic eruptions on earth. Sci. Rep. 8, 6838. doi:10.1038/s41598-018-25286-y PubMed Abstract | CrossRef Full Text | Google Scholar Passarelli, L., Sansò, B., Sandri, L., and Marzocchi, W. (2010). Testing forecasts of a new bayesian time-predictable model of eruption occurrence. J. Volcanol. Geotherm. Res. 198, 57–75. doi:10.1016/j.jvolgeores.2010.08.011 CrossRef Full Text | Google Scholar Pyle, D. (1998). Forecasting sizes and repose times of future extreme volcanic events. Geology 26, 367–370. doi:10.1130/0091-7613(1998)026(0367:FSARTO) 2.3.CO;2 CrossRef Full Text | Google Scholar Pyle, D. (2000). “Sizes of volcanic eruptions,” in Encyclopedia of volcanoes. Editors H. Sigurdsson, B. Houghton, S. McNutt, H. Rymer, and J. Stix (London: Academic Press). Google Scholar Rousseeuw, P. J. (1987). Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65. doi:10.1016/0377-0427(87)90125-7 CrossRef Full Text | Google Scholar Sandri, L., Acocella, V., and Newhall, C. (2017). Searching for patterns in caldera unrest. Geochem. Geophys. Geosyst. 18, 2748–2768. doi:10.1002/2017GC006870 CrossRef Full Text | Google Scholar Sandri, L., Marzocchi, W., and Gasperini, P. (2005). Some insights on the occurrence of recent volcanic eruptions of Mount Etna volcano (Sicily, Italy). Geophys. J. Int. 163, 1203–1218. 10.1111/j.1365-246X.2005.02757.x. CrossRef Full Text | Google Scholar SGC (2015). Actualización del mapa de amenaza volcánica del volcán galeras—Colombia. Pasto: Servicio geológico Colombiano, Dirección de Geoamenazas. Google Scholar Simkin, T., and Siebert, L. (2002). GVP-3. Volcanoes of the world: an illustrated catalog of holocene volcanoes and their eruptions. Smithsonian Institution, Global Volcanism Program Digital Information SeriesAvailable at: http://www.volcano.si.edu/world/ (Accessed 2020). Google Scholar Sobradelo, R., Marti, J., Mendoza-Rosas, A., and Gomez, G. (2011). Volcanic hazard assessment for the canary islands (Spain) using extreme value theory. Nat. Haz. Earth Syst. Sci. 11, 2741–2753. doi:10.5194/nhess-11-2741-2011 CrossRef Full Text | Google Scholar Stix, J., Calvache, V. M. L., and Williams, S. N. (1997). Galeras volcano, Colombia interdisciplinary study of a decade volcano. J. Volcanol. Geotherm. Res. 77, 1–4. doi:10.1016/s0377-0273(96)00082-0 CrossRef Full Text | Google Scholar Turner, M., Cronin, S., Bebbington, M., and Platz, T. (2008). Developing probabilistic eruption forecasts for dormant volcanoes: a case study from mt taranaki, New Zealand. Bull. Volcanol. 70, 507–515. doi:10.1007/s00445-007-0151-4 CrossRef Full Text | Google Scholar UNGRD (2019). Fortalecimiento de la gestión del riesgo de desastres en la zona de amenaza volcánica alta-zava del volcán galeras. (Bogotá, Colombia: Presidencia de la República). Google Scholar Voight, B. (1989). A relation to describe rate-dependent material failure. Science. 243, 200–203. doi:10.1126/science.243.4888.200 PubMed Abstract | CrossRef Full Text | Google Scholar Wickman, F. E. (1966). “Markov models of repose-period patterns of volcanoes,” in Random process in geology. New York: Springer, 135–161. Google Scholar Xu, R., and Wunsch, D. (2005). Survey of clustering algorithms. IEEE Trans. Neural Network 16, 645–678. doi:10.1109/TNN.2005.845141en_US
dc.description.obiettivoSpecifico6V. Pericolosità vulcanica e contributi alla stima del rischioen_US
dc.description.journalTypeJCR Journalen_US
dc.relation.eissn2296-6463en_US
dc.contributor.authorSandri, Laura-
dc.contributor.authorGarcia, Alexander-
dc.contributor.authorCosta, Antonio-
dc.contributor.authorGuerrero, Alejandra-
dc.contributor.authorCordoba, Gustavo-
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italiaen_US
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italiaen_US
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italiaen_US
dc.contributor.departmentBarcelona Supercomputing Center, Barcelona, Spainen_US
dc.contributor.departmentUniversidad de Narino, Department of Engineering, Pasto, Colombiaen_US
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia-
crisitem.author.deptBarcelona Supercomputing Center, Barcelona, Spain-
crisitem.author.deptUniversidad de Narino, Department of Engineering, Pasto, Colombia-
crisitem.author.orcid0000-0002-3254-2336-
crisitem.author.orcid0000-0001-9196-8452-
crisitem.author.orcid0000-0002-4987-6471-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat
2021_Frontiers_Galeras_08-583703.pdfMain text2.91 MBUnknownView/Open
2021_Frontiers_Galeras_08-583703_Supplementary.zipsupplementary material572.75 kBCompressed ZIPView/Open
Show simple item record

Page view(s)

382
checked on Apr 27, 2024

Download(s)

11
checked on Apr 27, 2024

Google ScholarTM

Check

Altmetric