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A statistical analysis of explosive eruptive events can give important clues on the behavior
of a volcano for both the time- and size-domains, producing crucial information for hazards
assessment. In this paper, we analyze in these domains an up-to-date catalog of eruptive
events at Galeras volcano, collating data from the Colombian Geological Survey and from
the Smithsonian Institution. The dataset appears to be complete, stationary and consisting
of independent events since 1820, for events of magnitude ≥2.6. In the time-domain, Inter-
Event Times are fitted by various renewal models to describe the observed repose times.
On the basis of the Akaike Information Criterion, the preferred model is the Lognormal, with
a characteristic time scale of ∼1.6 years. However, a tendency for the events to cluster in
time into “eruptive cycles” is observed. Therefore, we perform a cluster analysis, to
objectively identify clusters of events: we find three plausible partitions into 6, 8 and 11
clusters of events with magnitude ≥ 2.6 the 6-cluster partition being the preferred. The
Inter-Event Times between cluster onsets (inter-cluster) and between events belonging to
the same cluster (intra-cluster) are also modeled by renewal models. For inter-cluster data,
the preferred model is the Brownian Passage Time, describing a periodical occurrence
(mean return time ∼36 years) perturbed by a Gaussian noise. For the intra-cluster
explosions, the preferred model is the Lognormal, with a characteristic time scale of
∼0.9 years. In the size-domain, we analyze only single events, due to the low number of
clusters. Considering two independent parts of the catalog, we cannot reject the null
hypothesis of the eruptedmass being described by a power law, implying no characteristic
eruption size. Finally, looking for time- and size-predictability, we find a significant inverse
linear relationship between the logarithm of the eruptedmass during a cycle and the time to
the subsequent one. These results suggest that, presently, Galeras is still in the eruption
cycle started in 2007; a new eruptive cycle may be expected in a few decades, unless the
present cluster resumes to activity with magnitude ≥2.6.
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1 INTRODUCTION

Since the sixties it has been suggested that the analysis of volcano
repose intervals (or inter-event times, IETs) can be used to forecast
eruptions (e.g., Wickman, 1966; Klein, 1982; Mulargia et al., 1985).
Since then, several studies have followed this approach, and have
proposed different probability distributions to model repose
intervals, starting from the simple exponential model for Poisson
processes (e.g., De la Cruz-Reyna, 1991; Marzocchi and Zaccarelli,
2006), to other models characterized by more parameters, such as:

• Failure models based on the Weibull distribution (e.g.,
Voight, 1989; Bebbington and Lai, 1996), which assumes
the probability of event occurrence varying since the time of
the last event, and in particular it may increase/decrease
based on the value of the shape parameter.

• LogLogistic models (Connor et al., 2003), which describe the
influence of two competing processes, one increasing and
one decreasing the probability of an event with time from
last event.

• Power-law models, characterized by possible infinite
variance and mean (Pyle, 1998).

• Self-exciting models for the event rate (also called intensity
in literature), in which every event increases the likelihood
of a subsequent event, but this influence decreases with time
(Bebbington and Cronin, 2011; Bevilacqua et al., 2016).

• Brownian Passage Time (BPT) model, characterized by a
parameter indicating the mean repose time and an
“aperiodicity” parameter, measuring the aperiodicity of
the mean response of the system (Garcia-Aristizabal
et al., 2012; Garcia-Aristizabal et al., 2013); this model
has proved useful to compare different systems spanning
from periodic-like to Poisson-like (aperiodic) systems, and
has an asymptotic (long-term) finite and constant hazard
function toward infinite times;

• Lognormal models, usually describing a quasi-periodic
behavior (Bebbington and Lai, 1996).

• Mixtures of some of the above distributions, as e.g., mixture
of exponentials (Mendoza-Rosas and la Cruz-Reyna, 2008)
or mixture of Weibulls (Turner et al., 2008), to describe
multi-modal processes.

All these models assume that the repose intervals in a given
catalog are a sample from a common parent distribution that
governs a stationary (that is, the parameters of the parent
distribution do not change over time) process generating the data.

However, a frequent characteristic of volcanic activity is its
tendency to concentrate during temporal frames, that is, to occur
in temporal clusters. This has been studied in several papers (e.g.,
Conway et al., 1998; Cronin et al., 2001; Bebbington, 2010;
Bevilacqua et al., 2016) in different volcanic settings. In these
models there is no specific objective identification of possible
groups of events (or clusters) that are sometimes observed in the
real datasets. In other words, clustering in these models may
appear as a consequence of the nature of the parent distribution;
for example, a process described by a Weibull distribution may

exhibit a degree of clustering (in case the shape parameters is
smaller than 1), as well as self-exciting models.

Another development in the modeling of repose time intervals
is to include also the size of eruptions, parameterized by the
erupted mass, erupted volume, or the eruption magnitude (Pyle,
2000) or by the VEI (Newhall and Self, 1982). For example,
several studies have searched for a significant link between sizes of
eruptions and their subsequent repose times, that is known as
Time-Predictable Model (TPM), or between repose times and the
sizes of their subsequent eruptions, that is known as Size-
Predictable Model (SPM), both in the classical (De la Cruz-
Reyna, 1991; Burt et al., 1994) or in a generalized form (e.g.,
Sandri et al., 2005; Marzocchi and Zaccarelli, 2006; Bebbington,
2008; Passarelli et al., 2010; Garcia-Aristizabal et al., 2012; Sandri
et al., 2017). These models have the advantage of providing a
simple conceptual model linking the repose time intervals to the
process of loading and discharging of the magma storage system.

Finally, in analogy with the famous Gutenberg-Richter law in
seismology (Gutenberg and Richter, 1944), when a catalog of
eruptions from a volcano is available, one may also wonder how
to model the distribution of eruption magnitude occurrences, in a
so called frequency-size law.

A new up-to-date catalog for Galeras volcano has been
recently collated by integrating official catalogs from the
Colombian Geological Survey and data from the Smithsonian
Institution. The main goal of this paper is to provide a statistical
description of the main features of the eruptive activity at Galeras
volcano (Colombia), and to better understand the processes
generating the observed data. This goal is achieved by
applying the methodologies described above.

We analyze the Galeras’ new catalog in different perspectives:
the temporal domain, the magnitude domain, and the time-
magnitude domain. In general, we mostly use standard
statistical analyses to describe the volcano’s eruptive behavior;
moreover, we adapt these analyses in order to obtain clues about
eruption recurrence considering clustered processes.

The paper is organized as follows: first, we give a brief
introduction about the volcanic setting of Galeras (Section 2),
and about the new eruption catalog, with the preliminary study to
find adequate thresholds in time and magnitude to consider the
catalog as complete (Section 3). Then, in Section 4 we describe
the methods we use to analyze the catalog in the three
perspectives; in particular:

• In Section 4.1 we search for the best recurrence model
describing the IETs distribution, both by taking all the
eruptions as single events and by means of cluster
analysis to objectively identify and analyze clusters of
eruptions. With these models, we aim at describing the
main features of Galeras’ catalog. In particular, with the
cluster analysis, we would like to assess how likely it is that a
future eruption belongs to an already-ongoing cluster, or
marks the start of a new one;

• In Section 4.2 we model the frequency-size relationship;
• In Section 4.3 we search for significant links between the

repose times and the magnitudes of eruptions in the Galeras
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catalog, in order to reject or not the hypothesis of a
significant time- or size-predictability in the data.

We present the results of our analyses in Section 5, following
the same logical order as in Section 4. Finally, in Section 6 we
discuss and compare the results obtained in the three perspectives
with the aim of trying to understand better the magma feeding
system of Galeras volcano.

2 GALERAS VOLCANO

Galeras volcano is an andesitic stratovolcano 4200m high, located
at 1.221°N and 77.359°W in southern Colombia, close to the
Colombia-Ecuador border (Calvache, 1990; Hurtado Artunduaga
and Cortés Jiménez, 1997; Cepeda, 2020). According to Calvache
et al. (1997) Galeras volcano is located in the scar left of the former
Urcunina stage collapse, which left an amphitheater that opens
toward the west, the active cone being the current Galeras volcano
stage. The eruptive activity at Galeras volcano, which began about
5.000 years ago (Calvache, 1990; SGC, 2015), is mainly
characterized by relatively small-volume, vulcanian eruptions
(Hurtado Artunduaga and Cortés Jiménez, 1997).

Historical records of Galeras volcano activity only began
after the Spanish colonization. Stories of the chroniclers
resulted in an almost complete record of historical eruptions
(Calvache, 1990) since the 16th century. Most of the eruptions
occurred in the ∼ 500 years of historical record can be
considered to be explosive of small to moderate in size
(Bonadonna and Costa, 2013), with some of them
accompanied by small pyroclastic flows (Espinoza, 1988;
Hurtado Artunduaga and Cortés Jiménez, 1997). However,
the risk for the population can be high, as almost 500,000
people inhabits in the proximity of the active crater (DANE,
2011) and more than 5,000 people live within the high hazard
zone (UNGRD, 2019).

3 DATA AND DEFINITION OF A COMPLETE
DATA SET
3.1 Collation of the Explosive Eruptive
Events Database
Galeras is one of the most active volcanoes in Colombia
(Calvache, 1990). A considerable number of eruptions at
Galeras has been recorded and identified in the last
5,000 years. Although, as mentioned above, the majority of
these events has been generally characterized by vulcanian
activity, at least six major events have been recognized and
analyzed (Calvache et al., 1997). The third version of hazard
map of Galeras volcano considers a total of 45 events found in
stratigraphic records (Hurtado Artunduaga and Cortés Jiménez,
1997). An additional catalog of historical records of the last
500 years registered by numerous authors (Calvache, 1990)
was compiled and documented by Espinoza (1988).

The catalog of Explosive Eruptive Events (EEE) used in this
work was produced integrating geological and historical

information obtained from different sources (Calvache, 1990;
Hurtado Artunduaga and Cortés Jiménez, 1997; Stix et al., 1997),
including the Smithsonian Institution catalog (Global Volcanism
Program, 2013) and data from the Colombian Geological Survey
(formerly INGEOMINAS), who provide detailed reports of the
last periods of activity (INGEOMINAS, 2005; INGEOMINAS,
2010). A total of at least 78 eruptive events were registered
between 3120 BCE and 2010 CE. Furthermore, the catalog
includes calculated data as eruption date, VEI, magnitude,
and, for recent eruptions, the volume and column height.

Smithsonian Institution and Colombian Geological Survey
were the primary sources of the data. Both offer a catalog of
the events and provide mainly information about the eruption
date and the VEI value. Other characteristics as mass, volume,
and column height were taken also from complementary sources
(Calvache, 1990; Hurtado Artunduaga and Cortés Jiménez, 1997;
Stix et al., 1997).

However, the information available for some eruptions (in
general the older ones) is derived from historical descriptions that
do not include technical details or the exact date; in these cases,
where possible, the missing information was inferred using
relationships among parameters available in the literature
(i.e., Newhall and Self, 1982). The final EEE catalog produced
in this work is provided in the Supplementary Material (Section
Supplementary Material).

In order to proceed with catalog analysis, we fill in the
missing months and/or days with random dates, without
altering the recorded succession of events. If only the day is
missing, we pick a random day in that month; if also the month
is missing, we pick a random day in the year. To check the
influence of this choice, we also filled in the missing dates by
using the mid point of the missing period with no difference in
the obtained results.

3.2 Defining aComplete Dataset in Time and
Size
To study the temporal pattern of EEEs occurrence it is necessary
that the input catalog represents a complete record of events
above a given size, avoiding bias in the analysis by possible under-
reporting of events. Therefore, we first analyze the completeness
of our dataset by looking for significant changes in the rate of
events in time.

By considering both the whole data (Figure 1) and the subset
of events with magnitude M ≥ 2.6 since 1820 (Figure 2), we
notice that the increase in event rate since the 1820s may
indicate a bias due to the under-recording of small
magnitude events before then. For this reason, we consider
as complete the catalog since 1820s only for events above or
equal to magnitude 2.6, and these time and size constraints are
used to set the dataset to be analyzed in this paper. In doing so,
we realize we are discarding the largest portion of the most
recent recorded events (approximately since 1990), which
probably represents the most accurate record of what has
happened at Galeras, complete for much lower magnitude.
However, on the one hand we cannot use only the latter 30-
years data to infer the long-term behavior of the volcano, as we
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would end up with too few events to conduct a sound statistical
analysis, representative for a short period of time; on the other
hand, as reported in Section 4.2, we use this last 30-years

portion of the catalog to build a frequency-size distribution
that is then compared with the results obtained using the longer-
term, complete catalog.

FIGURE 1 | Galeras’s new catalog collected, since 3000BP. (A): the frequency-size plot (B) time series of eruption occurrence and magnitude; (C) Cumulative
Distribution Function of onset times of all events in catalog (D) Cumulative erupted mass in time.

FIGURE 2 | Same as Figure 1, for the complete part of the catalog only, i.e. only eruptions of M ≥ 2.6 since 1820AD. In panel C we also show the theoretical
relationship (solid line) for a perfect stationary process, while the dashed/dashed-dotted lines show the 95/99% confidence interval.
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4 MODELLING APPROACH

4.1 Temporal Analysis
One of the aims of this paper is to study the temporal distribution
of EEEs at Galeras volcano. In Figure 2C we plot the cumulative
number of EEEs at Galeras in time; a visual inspection of this plot
may indicate their possible temporal clustering, in which
explosions exhibit a tendency to form groups of events close
in time. Figure 2D shows the cumulative erupted mass (in kg) as
events occur in the complete part of the catalog. A visual
inspection of this plot suggests also a possible relationships
between the repose times between subsequent events and the
erupted mass in one of the two events.

Keeping in mind these observations, in this paper we analyze
the catalog of eruptions of Galeras volcano from different
perspectives; in practice, we perform a dual analysis by
studying in parallel recurrence features of single EEEs (we
informally call this analysis “all IETs together”), and groups of
EEEs occurring close in time, that hereinafter we call clusters.
Beyond a classical recurrence analysis of eruptions, we are
interested in examining the behavior of the clusters.

4.1.1 Recurrence Analysis of Single EEEs (“all IETs
Together”)
As a first step we perform a classical recurrence analysis
considering the complete part of the catalog. With this aim,
EEEs are treated as a stochastic point process in which individual
occurrences are assumed to be independent random events in
time, at times t1 < t2 < . . . < ti . . .. We define IETs, the time
passed between two consecutive EEEs, as τi � ti+1 − ti,
(i � 1, 2, . . .). Adopting this approach, and ignoring the event
duration, implies assuming that the EEE onset time is the most
physically meaningful information (Garcia-Aristizabal et al.,
2012); therefore, our modeling aims to describe the waiting
times of the physical processes governing renewed volcanic
activity.

In order to fit our complete dataset with renewal models, the
data need to be first checked for stationarity (i.e., generated by a
stationary process) and independence (i.e., successive IETs must
be independent). Thus, we check independence between
successive IETs of events in the complete part of the catalog
by rejecting a correlation between the duration of successive IETs
as in Bebbington (2012). Further, we check stationarity in the
IET-generating process (in the complete part of the catalog) by
running the Kolmogorov-Smirnoff test to reject significant
deviations from a uniform distribution of the onset times of
events.

In the light of these tests, the complete part of the catalog,
consisting of independent IETs generated by a stationary process,
is described by considering alternative renewal models. The
performance of the different statistical models is evaluated
through the Akaike Information Criteria (AIC), trying to find
a good balance between goodness-of-fit to the data and model
simplicity (expressed by the number of free parameters). In
particular, if our IETs can be taken as a sequence of random
variables {τ} independent and distributed according to a function

F(τ), then the original series of events {ti} is called a renewal
process. To better understand the nature of these competing
models (and in particular the preferred one based on the AIC), we
calculate and plot the hazard rate, which for a history-dependent
point process is the ratio of the probability density function f (x)
to the survival function S(x):

H(x) � f (x)
S(x) �

f (x)
1 − F(x) (1)

H(x) is the instantaneous event rate at time t conditional on
survival until the time t, with x � (t − tL), being tL the occurrence
time of the last event before t (e.g., Bain, 1978).

The renewal models that we test are the Exponential, the
Weibull, the LogLogistic, the Lognormal, the Gamma and the
Brownian Passage Time (BPT). Except the Exponential
distribution, characterized by one parameter, these statistical
models are described by two parameters (see Table 1).
Further, we also test a mixture of Exponentials (3 parameters)
and a mixture of Weibulls (5 parameters), in analogy with
previous works (e.g., Turner et al., 2008), trying to explain a
possible bimodality in the set of the IET taken all together. In
order to fit the two latter models, we implemented a Markov
chain Monte Carlo (MCMC) approach; however, we check the
consistency of the results using also the algorithms provided by
Bebbington (2012). In fitting these models vs. the cataloged data,
we also use the censoring information, i.e., no M ≥ 2.6 event has
occurred since October 4, 2007, up to the end of 2019.

4.1.2 Recurrence Analysis Assuming Clustered
Eruptions
Observing the Galeras data set and the value of the Coefficient of
Variation of the IETs, equal to 1.65 (e.g., Marzocchi and
Zaccarelli, 2006), it seems plausible that EEEs exhibit some
degree of clustering in the time domain. For this reason, we
hypothesize the possibility that, once a new event or a new
eruptive cycle starts, the short-term behavior of the eruptive
activity may follow different patterns during the evolution of
the activity.

Therefore, in alternative to the data analysis proposed in the
previous paragraph, we may hypothesize the possibility of two
different processes governing the behavior of eruptive activity in
the time domain: a) a long-term process that determines the
recurrence of eruptive cycles (or eruption clusters), and b) a
short-term process that determines the recurrence of eruptive
activity within each eruptive cycle (once it has started). From a
stochastic point of view, we analyze this problem by considering
these two processes as follows: in the long-term, eruptive
activity can be described by the onset of eruptive cycles
(i.e., clusters), and the stochastic characterization of such
processes can be described by analyzing the rate at which
these eruptive cycles take place. In the intra-cycle time scale,
once an eruptive cycle has started, the eruptive activity can be
described by analyzing the occurrence of events within the
eruptive cycle. For this analysis, we select the complete part
of the eruptive catalog identified by the methods described in the
previous section. Then:
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• First, we identify plausible data set partitions to form event
clusters. This analysis can be performed by hand processing
(e.g., if the data clearly shows these partitions), or adopting a
more quantitative approach based on any cluster analysis
technique. Although the Galeras eruptions somehow exhibit
clear groups of eruptions in the time domain that could be
identified as clusters, we adopt a classical partitioning
approach using the k-means method (MacQueen, 1967),
which is described in the following paragraphs.

• Once the clusters are identified, we set the start time of each
cluster by selecting the time of the first event within each
cluster. Such cluster start times are used to compute the
inter-cluster time intervals.

• The inter-cluster time intervals are analyzed by testing
different renewal models (the same as above:
Exponential, Weibull, LogLogistic, Lognormal, Gamma
and BPT); the most adequate distribution is again
selected by using the AIC.

• For the events within each cluster, we calculate the intra-
cluster IETs, that are the time intervals between the events
belonging to the same cluster. Again, such IETs are analyzed
by testing different renewal models and the most adequate
one is selected by using the AIC.

4.1.2.1 Cluster Analysis
The k-means algorithm used for cluster analysis (MacQueen,
1967) takes the input parameter (k), which represents the number
of clusters, and partitions a set of n objects into k clusters so that
the resulting intra-cluster similarity is high compared to the inter-
cluster similarity.

Defining an adequate number of clusters k is a challenging
issue (see e.g., Garcia-Aristizabal et al., 2017); in this work we use
the popular Silhouette Method (Rousseeuw, 1987; Xu and

Wunsch, 2005; Al- Zoub and al Rawi, 2008; Kaufman and
Rousseeuw, 2008). Given a partition into k clusters, this
method assigns a silhouette coefficient to every object in the
dataset; this coefficient depends on i) the average distance
between the object and the objects belonging to its cluster, and
ii) the average distance between the object and the objects
belonging to other clusters. For a satisfactory partitioning, the
latter must be larger than the former, and in this case the
coefficient takes positive values.

The unknown optimum k value is the one in which all the
silhouette coefficients in each cluster:

• Are positive (otherwise it means either there is an “outlier”
object in the cluster that is very far from its “companion”
objects), and

• Are all comparable with the average silhouette value of all
clusters (otherwise it means there is a cluster that is not
clearly separated from another one).

The silhouette method offers the advantage that it only
depends on the actual partition of the objects, and not on the
clustering algorithm that was used to obtain it. Its usefulness in
the interpretation and validation of cluster analysis results has
been discussed in a number of applications (e.g., Rousseeuw,
1987; Chen et al., 2002; Bolshakova and Azuaje, 2003; Garcia-
Aristizabal et al., 2017).

4.2 Frequency-Size Analysis
In the previous paragraphs we presented the methods for
analyzing the distribution of Galeras eruptions in the time
domain considering both single and clustered eruptions.
However, determining a frequency-magnitude (F-M)
relationship for natural phenomena is another key issue for
hazard and risk assessments since it allows one to estimate the

TABLE 1 | Renewal models fit to the IETs data (x in years), considering the censoring information of no failure at the date of December 31, 2019.

Model Formula No Param ML Parameters Log-Likelihood AIC

Exponential λe−λx 1 λ � 0.15 [0.10; 0.21] yr−1 −84.4 170.8
BPT

���
λ

2πx3

√
e
−λ(x−μ)2

2μ2 x 2 μ � 8.7 [0; 30] yr −77.4 158.8
λ � 0.28 [0.14; 0.43]
(α ∼ 5.6)

Weibull β
α (x

α)β− 1
e−(x/α)

β

2 α � 4.1 [2.1; 8.2] yr −73.4 150.9
β � 0.56 [0.42; 0.73]

LogLogistic kxk−1μ−k

[1+(x/μ)k ]2 2 μ � 1.6 [0.74; 3.3] yr −73.2 150.4
k � 0.84 [0.63; 1.14]

Lognormal 1
xσ

��
2π

√ e−(ln(x)−μ)2
2σ2 2 μ � 0.46 [-0.26; 1.2] −72.4 148.8

σ = 2.0 [1.5; 2.6]
Gamma 1

baΓ(a)x
a−1e(−x/b) 2 a � 0.43 [0.29; 0.66] −74.5 153.0

b � 16 [7.9; 32]
Mix exponential pλe−λ1x+(1 − p)λe−λ2x 3 λ1 � 1.04 [0.49; 3.39]yr−1 −72.5 150.9

λ2 � 0.06 [0.02; 0.12] yr−1

p � 0.58 [0.30; 0.82]
Mix weibull p β1

α1
( x
α1
)β1−1

e−(x/α1 )
β1 +(1 − p) β2α2 ( x

α2
)β2− 1

e−(x/α2 )
β2 5 α1 � 4.2 [1.9; 8.2] yr −75.1 160.2

β1 � 0.54 [0.40; 0.70]
α2 � 3 1034 [1 10−15; 3 1059]
β2 � 1 1043 [9 1023; 2 1063]
p � 0.97 [0.87; 1]

In bold we highlight the model with lower AIC (and therefore, the preferred model). In square brackets we provide the 95% confidence intervals.
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return period of damaging events. As for other natural hazards,
the frequency of explosive eruptions decreases as their size or
magnitude increase; while for some phenomena (as e.g.,
earthquakes, extreme meteorological events, or flooding) there
exist event catalogs populated with enough data for quantitative
analyses, the record of eruptions from a single volcano is usually
composed by a few events for which it is often difficult to properly
define a F-M model. For this reason, the most sound F-M models
proposed to describe the distribution of eruption magnitudes rely
on regional to global analyses in which large eruptions from
different volcanoes are merged and generalized in a single model
(e.g., Simkin and Siebert, 2002 onwards). However, it is worth to
note that while such aggregations may show an identifiable F-M
distribution, it is not implied that this relationship holds for any
particular volcano.

In this context, different F-M models for describing volcanic
explosions have been proposed in literature, which are based, for
example, assuming a exponential magnitude distribution (similarly
to the Gutenberg-Richter model in seismology, as e.g., De la Cruz-
Reyna, 1991; Mendoza-Rosas and la Cruz-Reyna, 2008), which is
equivalent to assuming a power law distribution of eruption
volumes (e.g., Papale, 2018) or mass, and it implies a so-called
scale invariance in the eruption magnitude. Others authors have
used extreme value theory (e.g., Mason et al., 2004; Coles and
Sparks, 2006; Mendoza-Rosas and la Cruz-Reyna, 2008; Deligne
et al., 2010; Furlan, 2010; Sobradelo et al., 2011).

In this study we try to fit our data with a power law describing
the erupted mass me in single events:

N(me � m) � km−b (2)

where N(m) is the number of eruptions with erupted mass equal
to m, and k and b are parameters of the law. By taking the
logarithm of this equation, we get to the formulation that is
similar to the Gutenberg-Richter law for earthquakes, i.e.:

Log10[N(Me � M)] � a − bM (3)

where M is the magnitude of an eruption, which is a linear
function of Log(m) (Pyle, 2000). If this holds, magnitudes obey to
an exponential distribution (Aki, 1965; Marzocchi and Sandri,
2003):

N(x) � λe−λx (4)

where x � M − (Mc − ΔM/2) + ε, being Mc the completeness
magnitude in the catalog, ΔM is the magnitude bin (in our
case 0.1 to 1), and ε is uniform random noise over
[−ΔM/2, ΔM/2] mimicking the magnitude uncertainty.

In this study, we follow the approach of Marzocchi et al.
(2016), that basically consists of:

• Selecting a completeness magnitude Mc

• Testing (by a Lilliefors test, Lilliefors, 1969) the null
hypothesis that eruption magnitudes are consistent with
an exponential distribution; we need to apply a random
noise ε to magnitude values, since they are binned to first
decimal, thus introducing “fake” ties in the dataset, that alter
the Lilliefors-test results

• if the null hypothesis is not rejected at 5% significant level,
we fit the magnitude data with the maximum likelihood
method (Marzocchi and Sandri, 2003) to estimate the
b-value

Since we have already estimated the completeness magnitude
in Section 2, we apply the scheme above for the data from 1820
and M ≥ 2.6. However, since we also recognize a lower
completeness magnitude if we reduce the catalog to the last
30 years (in particular, from 1990 with M ≥ 1.5, see bottom
panel in Figure 3) we repeat the above analysis also for this
different dataset, which shares only one eruption (October 4,
2007) with the one from 1820 andM ≥ 2.6. If we cannot reject the

FIGURE 3 | Frequency-size analysis: in red the S1 data (see text),
i.e., from 1820, M ≥2.6; in blue S2, i.e., from 1990, M ≥ 1.5. In panel A we
show the two datasets used (gray points are not used as they are below the
completeness threshold); in panel B red dots and diamonds show
respectively the not-cumulative and cumulative occurrences for S1 data, while
blue circles and plus signs respectively show not-cumulative and cumulative
occurrences for S2 data. The best fitting b-value lines are superimposed to the
cumulative data, although they have been computed on the not-cumulative
ones for an unbiased estimate.
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hypothesis of magnitudes following an exponential distribution
for both datasets, we may compare the two b-values obtained and
see whether they are consistent: in a scale-invariant process, they
should have a unique value.

4.3 Time-Predictable and Size-Predictable
Models
The recurrence analyses presented so far provide important clues
regarding the stochastic behavior in time of eruption events above
the minimum completeness magnitude of eruptions.
Complementary to such analyses, it is possible to explore the
predictive value of other data in the catalog, in particular the
possible relationships between the size and the time interval
between eruptive activity. Such kind of models are generally
referred to as time-predictable and size-predictable (e.g., De la
Cruz-Reyna, 1991; Burt et al., 1994; Passarelli et al., 2010; Sandri
et al., 2017).

We test such models for both the individual eruptions and the
clustered eruptions. Regarding in particular the clustered data, on
the complete part of the catalog partitioned in clusters, we
calculate the total erupted mass within each cluster (taken as
an eruptive cycle); afterward, we analyze this information
considering the time preceding or the time following the
respective eruptive cycle (taken as the time between the end of
a cluster and the onset of the following one), searching possible
significant relationships typical of time- or size-predictable
systems.

Here, we generalize the classical conceptual models at the
basis of time- or size-predictable systems as in Passarelli et al.
(2010), by treating clusters as eruptive cycles, and searching for
relationships between the “size” of a magmatic cycle
(parameterized by the total erupted mass in the cycle) and
the time elapsed from/to the previous/following cycle. We
explore both classical linear relationships (as in De la Cruz-
Reyna, 1991; Burt et al., 1994), as well as more general ones,
such as a power law (as in Passarelli et al., 2010). In this view,
any significant relationship between the total mass erupted in
the preceding cycle and the time to subsequent eruptive cycle
can be taken as a generalization of time-predictability.
Conversely, any significant relationship between the time
from the preceding eruptive cycle and the total mass erupted
in the subsequent cycle can be taken as a generalization of size-
predictability.

5 RESULTS

5.1 Temporal Analysis
5.11 Recurrence of Single Eruptive Events
We analyze the time series of the IETs from 1820s above
magnitude 2.6, to exclude any significant dependency between
successive IETs of events with M ≥ 2.6 (Figure 4). We reject any
significant correlation between the duration of successive IETs,
both in terms of linear correlation (Pearson coefficient r2 � 0.08,
p-value ≫ 5%) and rank correlation (Spearman coefficient ρ �
0.34, p-value > 5%).

The stationarity Kolmogorov-Smirnoff test on events with M
≥ 2.6 since 1820 (Figure 2C) is not rejected at 1% significance
level (value of test statistics is 0.25), and we see that our data are
well within the 99% confidence level. Thus, we do not reject the
hypothesis that our data represent a stationary time series.

In the light of these tests, we take the list of events with M ≥ 2.6
since 1820 as a complete dataset, composed by independent IETs
generated by a stationary process, and we fit it with the most
common and simple renewal models (Figure 5), listed in Table 1
(where we show the models tested, their maximum likelihood
parameters, and their AIC value). According to the AIC, the best
model that describes the IETs of all the eruptions in the complete
catalog is the Lognormal distribution (in bold in Table 1).

The mixture of exponentials with the best AIC shows an
intermediate degree of mixing (p � 0.6) between two different
exponentials, and explains the data certainly better than the single
exponential (see Table 1); however, its AIC is not better than the
one achieved by the Lognormal distribution.

The mixture of Weibulls fit by our MCMC algorithm
systematically points toward solutions with the p parameter
close to one; such solutions imply the prevalence of one of the
Weibull components, which is characterized by the same
parameter values of the single Weibull reported in Table 1.
On the other hand, the fitting procedure by Bebbington (2012)
points to an alternative solution with a good AIC but
characterized by one of the two Weibull distributions being
close to a Dirac delta, i.e., very peaked and not useful to
understand any process generating these data. The difficulty to
fit this model probably arises because of a complex likelihood
surface (characterized by 5 parameters) to be maximized, making
it hard to find a proper solution to the problem with the few tens
of data available; ultimately, this may be related to a difficulty in
discriminating between two processes hardly distinguishable with
the data at hand. Thus we conclude that themixture ofWeibulls is
not helpful in our case, and that our best model when considering
all the IET together is the Lognormal.

FIGURE 4 | Independence of pairs of successive IETs.
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5.1.2 Recurrence Analysis Assuming Clustered
Eruptions
5.1.2.1 Optimal Cluster Partitioning
The cluster analysis is performed in the time domain and
considering the complete part of the catalog (M ≥ 2.6 data
since 1820). We test different k values (where k is the number
of possible clusters) and, considering the average silhouette value
(Figure 6G), we identify at least three plausible clustering
partitions: k � 6 (Figures 6A,B), k � 8 (Figures 6C,D) and k �
11 (Figures 6E,F). In each of the three rows in Figure 6, the
proposed k value was used as input parameter in the k-means
algorithm for the identification of clusters; the resulting clusters
of events are shown in the right panels (Figures 6B,D,E), in
which onset times are plotted against the respective event
magnitude.

These three possible cluster divisions exhibit high average
silhouette values (vertical colored lines in Figures 6A,C,E)
indicating relatively good partitions. In the case of 8 clusters
however, one of the silhouette coefficients is negative (a negative
value means that the event is more similar to the average event in
another cluster than in its cluster). In the other two partitions (6
and 11), most of the clusters exhibit silhouette values above the
respective average. However, in both cases there are poorly
constrained clusters: 1 cluster in the 6-cluster partition and 2
clusters in the 11-cluster partition (Figures 6A–E) show a
silhouette value not reaching the average value; furthermore,
in the case of 11 clusters, 9 clusters consists of only one or
two events having M ≥ 2.6.

Taking this latter limitation into account, we choose the simpler
6-cluster partition as the preferred one for analyzing the catalog of
Galeras volcano events. Since the choice is ultimately subjective, in
Section 6 we will also briefly discuss and compare the results for
the alternative eight- and 11-cluster partitions.

Once the clusters are identified, the clusters start times are set
using the onset time of the first event within each cluster. The

start time of the 6 clusters identified in the Galeras data set (from
1820 and M≥ 2.6) are summarized in Table 2, along with the
number of events within each cluster. In the Supplementary
Material we provide the same table for the eight- and 11-cluster
partitions.

Stochastic Modeling of Inter-cluster and Intra-cluster
Eruptive Behavior
Figure 7 shows the Cumulative distribution (CDF) of both the
inter- and intra-cluster IETs, and the different models tested on
the two datasets, in the case of 6-cluster partitioning, and
considering the censoring data.

Table 3 shows a summary of the AIC values obtained for the
different alternative models tested for describing the inter-cluster
IETs (i.e., long-term process). In bold we highlight the preferred
model, with lower AIC, that is the BPT.

Table 4 shows a summary of the AIC values obtained for the
different competing models tested for describing the intra-cluster
IETs (i.e., short-term process). In bold we highlight the preferred
model, with lower AIC, that is the Lognormal, as in the “all IETs
together” case. This similarity (in terms of model type, and
consistency in the best-fitting parameter values) can be
explained by the fact that the two datasets used for these two
analyses are composed by the same data except the IETs between
the pairs of events marking the end of a cluster and the beginning
of the successive one. Given the low number of clusters (6), it
means there are only five IETs less in the intra-cluster dataset with
respect to the “all IETs together” one.

5.2 Frequency-Size Analysis
For each of the two subsets of possible complete datasets
considered in this work (that is, subset 1 (S1): eruptions since
1820 with Mc ≥ 2.6; subset 2 (S2): eruptions since 1990 with
Mc ≥ 1.5; see Figure 3) we apply the magnitude randomization
procedure using the transformation shown in Eq. 4; in practice,
we subtract Mc − ΔM/2 to each magnitude value, and sum an ε
randomly sampled from an uniform distribution in the interval
[-0.05; 0.05] (assuming ΔM � 0.1). The Lilliefors test does not
reject the null hypothesis of magnitudes being exponentially
distributed for the S2 dataset (p-value ≫ 5%), where
magnitudes are more precisely assessed. For the S1 we need to
apply a larger noise to the estimated magnitudes in order to not
reject the null hypothesis (with ΔM/2 � 0.2 or larger, up to 1 unit
of magnitude, p-value is always > 5%). This is very reasonable,
considering that these are older eruptions and the estimated
magnitude is affected by larger uncertainty. By applying the
maximum likelihood method we obtain consistent estimates of
the b-value for the two datasets (Figure 3): bpart 1 � 0.86 ± 0.16
and bpart 2 � 0.93 ± 0.23.

5.3 Time-Predictable and Size-Predictable
Models
Figure 8 shows the plots of the total eruptedmass against the time
to the subsequent EEE (Figure 8A) or the time since the
preceding EEE (8b) considering the data of each single event

FIGURE 5 | Model fit to the ECDF of IETs from events with M ≥ 2.6
since 1820s.
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FIGURE 6 | Left panel: plot of the silhouette coefficient s(i) for the partition in 6 (A), 8 (C) and 11 (E) clusters; vertical lines show the average silhouette width. We see
that the second cluster in the case of partition in 6 clusters, the sixth in the case of 8, and the 8th and 11th clusters in the case of 11, are below average. In panel C, one of
the silhouette values is negative. Right panels: clusters in grouping in time, for partitions in 6 (B), 8 (D) and 11 (F) clusters). Panel (G) shows the average silhouette value
for different cluster numbers.
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independently. In these two cases, the data are not fit by any
significant TPM nor SPM model.

We perform the same analysis for the clustered EEEs; in
this case, the erupted mass in a given cluster is plotted against
the time from the end of that cluster to the start of the
subsequent one (8c) or the time between the end of the
previous cluster and the onset of the one erupting that
mass(8 days). According to the plot in Figure 8C, there is
some evidence (p-value of F-test: 0.0096) for a possible
“inverse” time-predictable relationship in which eruption
clusters characterized by large erupted mass are followed by
shorter repose times (until the start of the following eruptive
cycle). The fitted model shown in Figure 8C implies a power
law relationship between time to the subsequent cluster and
erupted mass:

τ(m) � 10αmβ (5)

where β � −0.23( ± 0.04) (f-test with H0: b � 0 is rejected with
p-value ≪ 1%), and α � 3.9( ± 0.4). According to this model, in
case the current cluster does not resume to activity of magnitude
2.6 or above, given the present mass output from the 2007
eruption, we should expect about 30 years (from 2007) for the
next cluster to start.

6 DISCUSSION

A new catalog of eruption explosive events at Galeras was collated
by using the datasets from the Colombian Geological Survey and
data from the Smithsonian Institution.

We consider that the catalog is complete, stationary and
composed by independent events since 1820, for events with
M ≥ 2.6. This catalog, taking it as a whole dataset of the realization
of a homogeneous point process, is best fitted by a Lognormal
model, implying that the logarithm of the IETs, taken all together,
are normally distributed. The μ parameter of the Lognormal
distribution represents the mean of the natural logarithm of the
cataloged IETs, so that eμ is their geometric mean; the latter can
be taken as a characteristic timescale, which in this case has a
value of approximately 1.6 years. However, being a geometrical
mean, its value is strongly influenced by the shortest IETs.

Along with the CV value, some of the fitted distributions to the
IETs all together have parameters pointing at a clustering of the

EEE. For example, the parameter α � ���
μ/λ

√
in the BPT model

(reported in Table 1) is an indicator of the aperiodicity of the
process (Garcia-Aristizabal et al., 2012) and here has a value
much larger than 1, as does the ß-value of the Weibull model.
These indicators support the visual observation of clustering in
the EEE occurrence. Thus, we are able to identify different
plausible cluster partitions. From these, the partition into 6
clusters seems to be the one providing the best trade off in the
distance measures used for grouping the events and therefore we
take this one as the reference partition for the discussion.
Nevertheless, in both the main text and the Supplementary
Material we complement the description presenting the
respective analogue results obtained when using a different
partition.

Considering the recurrence analysis of the eruptive events
within an eruptive cycle, the preferred stochastic model describing
the intra-cluster time intervals for this data set is the Lognormal
(integrating the data from all the clusters), with a characteristic
timescale parameterized by the μ parameter, translating into a
geometrical mean of intra-cluster IETs of approximately
0.9 years. From Table 4 we see that a comparable fit is
achieved by the LogLogistic distribution, with the same
characteristic time scale (again representing the geometrical
mean).

Conversely, considering the recurrence analysis of the eruptive
cycles (i.e., long-term process), the preferred stochastic model
describing the inter-cluster time intervals is the BPT, with a
characteristic repose time (scale parameter) of approximately
36 years. The parameter α shown in Table 3 in the present
case takes a value around 0.4, which indicates a slight
tendency toward periodical behavior (see e.g., Garcia-
Aristizabal et al., 2012). Although the BPT is the preferred
model, all the other distributions except the Exponential fit the
data similarly. Such similar values of the LogLikelihood are due
also to the low number of clusters available in the record. In any
case, we keep the BPT as the model best-explaining the inter-
cluster onset times.

As mentioned in Section 4, in a history-dependent point
process, the conditional probability that an event happens in a
time interval (x, x + Δt), given an interval of x � (t − tL) years
since the occurrence of the previous event (with t the current time
of the assessment, and tL the time of the last event, so that x is the
time from the last event), is the hazard rate or hazard function. The
hazard function describes instantaneous failure rate, or in other
words the conditional probability density of failure at time t given
that no event occurred in the time interval x. An increasing hazard
function at time t indicates that an event is more likely to occur in a
given increment of time Δt than it would be in the same increment
of time in an earlier age. The hazard function describing the
probability to experience the next event in the time interval
[x; x + Δt] given no event has occurred in x (that is again the
time elapsed since the last event) can be calculated as follows:

Pr(x <T ≤ x + Δt|T > x) �
∫x+Δt
x

f (s)ds
1 − F(x) (6)

TABLE 2 | Selected start time of the 6 clusters identified using the cluster analysis.

Cluster ID Cluster’s Start time Number of events with
M≥2.6 (In the cluster)

3 17-Jun-1823 5
1 02-Oct-1865 5
6 03-Jul-1889 2
4 08-Dec-1923 14
2 15-Jul-1947 3
5 04-Oct-2007 1

The start time was set by selecting the onset time of the first event within each cluster.
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where T is the occurrence time of the next event, f (x) is the
probability density function and F(x) is the cumulative
distribution.

The implications of the different results in terms of renewal
processes, found so far, can be analyzed inspecting the hazard rate
function (see Figure 9A; in the Supplementary Material we

TABLE 3 | Competing models tested for describing the inter-cluster time intervals
(long term process) considering the 6-clusters partition %.

Model N. parameters Parameter values (MLE) Log-
likelihood

AIC

Exponential 1 λ � 0.03 [0.008; 0.05] yr−1 −23.3 48.7
BPT 2 μ � 36[25; 49] yr −19.6 43.2

λ � 276[0; 617]
(α ∼ 0.37)

Weibull 2 α � 42 [30; 57] yr −20.0 44.1
β � 2.9 [1.5; 5.7]

Loglogistic 2 μ � 34 [24; 48] yr −19.9 43.8
k � 4.6 [2.3; 9.3]

Lognormal 2 μ � 3.5 [3.2; 3.9] yr −19.7 43.3
σ � 0.36 [0.19; 0.66]

Gamma 2 a � 7.9 [2.4; 26] yr −19.8 43.5
b � 4.7 [1.4; 16]

The parameters of the fitted models considering other cluster partitions are presented in
the Supplementary Material. In bold we highlight the model with lower AIC (and
therefore, the preferred model). In square brackets we provide the 95% confidence
intervals.

TABLE 4 | Competing models tested for describing the intra-cluster time intervals
(long term process) considering the 6-clusters partition %.

Model N.
parameters

Parameter
values (MLE)

Log-
likelihood

AIC

Exponential 1 λ � 0.35 [0.22; 0.50] yr−1 −49.5 100.9
BPT 2 μ � 4.0 [0; 12] yr −45.6 95.1

λ � 0.24 [0.11; 0.38]
(α ∼ 4)

Weibull 2 α � 2.0 [1.1; 4.0] yr −43.8 91.6
β � 0.63 [0.47; 0.86]

Loglogistic 2 μ � 0.91 [0.46; 1.8] yr −42.7 89.4
k � 1.0 [0.72; 1.4]

Lognormal 2 μ � −0.097[−0.76;
0.57] yr

−42.4 88.8

σ � 1.7 [1.3; 2.3]
Gamma 2 a � [0.33; 0.84] yr −45.0 94.1

b � [2.7; 12]

The parameters of the fitted models considering other cluster partitions are presented in
the Supplementary Material. In bold we highlight the model with lower AIC (and
therefore, the preferred model). In square brackets we provide the 95% confidence
intervals.

FIGURE 7 | Cumulative distribution (CDF) of the data (inter- and intra-cluster) and the different models tested (Exponential, Weibull, Log-logistic, Lognormal,
Gamma and BPT) considering the 6-clusters partition.
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provide the same plot for the 8- and 11-cluster partitions). The
hazard rate of the Lognormal distribution fitted to all the IETs
(without considering clustering of events) is a sharp increasing
and then slowly decreasing function. It broadly means that the
conditional probability of a new event is high shortly after an
event, and slowly decreases as time progresses. This is a clear
indication of a clustering effect. Given the current information
that no M ≥ 2.6 event has occurred during the current censoring
time x (approximately 12 years, since 4th October 2007), the
probability of such an event in the next year can be calculated by
Eq. 6 (Garcia-Aristizabal et al., 2012), with Δt � 1 year. By using
the best fitting model parameters from Table 1, we have a
probability of about 6% in the year 2020. In Figure 10 (Box
A) we also give an idea on how well this estimate is constrained:
by sampling the Lognormal parameters within their uncertainties
(from a bivariate Normal distribution and accounting for their
covariance), we recalculate the probability of a new EEE in the
year 2020. The 95% confidence interval for the probability of a
new EEE in 2020 under this model ranges from 4 to 10%
(Panel A1).

We can use the analysis of cluster to assess how likely a new
event would belong to the ongoing cluster, or would mark the
onset of a new cluster. The analysis on the 6-cluster partitioned
data shows that the hazard rate function best describing the

intra-cluster IETs distribution is again a Lognormal
distribution, similar to the “all IETs together” one: the longer
the time from the last events within a cluster, the lower the
likelihood of having a new event. This well describes the gradual
decline of activity during an eruptive cycle. Given the current
repose time of about 12 years since the last event in the last
cluster, the probability of a new M ≥ 2.6 in the year 2020 is
about 9%, quite similar to the one obtained considering “all IETs
together”. This is reasonable, considering the similarity between
the two datasets (see Section 5.1.2). In Figure 10 (Box B) we see
that the 95% confidence interval for the probability of a new EEE
in 2020 belonging to the current cluster spans from 6 to 15%
(Panel B1).

The preferred model describing the inter-cluster time intervals
is a BPT, which can be seen as a delayed Poisson process: in our
case, the hazard rate is very small for about 15 years after an
eruptive cycle has begun (Figure 9A), and increases
monotonically up to around 65 years, when it becomes flat as
in the case of a homogeneous Poisson process, characterized by a
constant hazard rate (e.g., Garcia-Aristizabal et al., 2012). The
probability of a new eruptive cycle beginning becomes non
negligible after a time passed since the start of the previous
cycle of about 16 (or 20) years, i.e., when the survivor function is
smaller than 99% (or 95%). Given the current elapsed time since

FIGURE 8 | (A) Plot of the relationship between time to subsequent eruptive event against the erupted mass (as for a time-predictable model) at a given time and
considering each individual event. (B) Plot of the relationship between erupted mass at a given time against the time from the previous eruptive event (as for a size-
predictable model) and considering each individual event. (C) The same as (A) but considering cluster events (i.e., time to subsequent cluster and the cumulative mass
during a cluster and considering the 6-clusters partition). (D) The same as (B) but considering cluster events (i.e., cumulative mass during a cluster and time from
previous cluster and considering the 6-clusters partition).
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the beginning of last cluster of about 12 years, there is a
probability of about 0.1% of entering in a new eruptive cycle
in the year 2020. In Figure 10 (Box C) we see that the uncertainty
on the BPT parameters propagates into a 95% confidence interval
on such value that spans from ∼0 to 4% (Panel C1).

A question we may try to answer is when to consider a cycle
over, once Galeras is in an eruptive cycle, according to the
clustered model for M ≥ 2.6 events. By using the fitted model
parameters for the 6-cluster partition in the intra-cluster
Lognormal model (Table 4), a repose of about 47 and
15 years yields respectively a 1 and 5% probability in the
survivor function.

These results suggest that, overall, at present we are more likely
still in the cluster that started in 2007: in other words, if the
volcano re-enters in activity with M ≥ 2.6 or above during the
current year (2020), according to this clustering model this EEE
would be more likely associated to the ongoing eruptive cycle,
rather than to the start of a new eruptive cycle. Speculatively, a
slightly different judgment would be given in case no EEE occurs
in the next 20 years approximately, i.e., until the year 2040: in
such case, the probability in that year to experience an EEE overall
from the “all IETs together” model would be about 3%, and
similarly of an EEE belonging to the present cluster (4%), while
the probability of an EEE opening a new cluster becomes about
6%. This is just an example to show how the results from the
cluster model can be interpreted, keeping separate the intra- and
inter-cluster models. In the right-column panels of Figure 10 we
show the resulting probability for an event in year 2040, under
different models, accounting for the uncertainty on the model
parameters. The respective 95% confidence intervals for the three
probabilities are (2–5), (3–8) and (3–18)% (Panels A2, B2 and C2,
respectively).

Overall, when considering the “all IETs together” (as well as
the intra-cluster) modeling, we obtain a best-fitting model that
describes a decreasing hazard rate (Figure 9A) in time. This
implies that, after a long time has elapsed since the last event of
M ≥ 2.6, the eruptive activity tends to vanish. In this view, the
cluster model, through the description of inter-cluster time
intervals, is useful to describe the recognized long-term
behavior of Galeras, characterized by time-separated eruptive
cycles at least in the last 200 years. As shown in Figure 9B, where
we plot the ratio of the inter-to the intra-cluster hazard rate, the
hazard rates for these two processes are comparable for a
censoring time of approximately 30 years, a sort of threshold
for discriminating which of the two processes is more likely to be
the origin of the current censoring time.

In order to account for the subjectivity in the cluster
partitioning, in Figure 10 we show the same results for the 8-
and 11-cluster partitioning. In particular:

• The intra-cluster preferred model is again the Lognormal for
the 8-cluster partitioning, and the LogLogistic for the 11-cluster
one, with comparable distribution parameters and resulting
probability for a new intra-cluster EEE in 2020 or 2040 (due to
the same reason for the similarity between the “all IET
together” and 6-cluster cases, panels B3, B4, B5 and B6).

• The 8-cluster partitioning favors a Weibull model for the
inter-cluster time occurrence (Panels C3 and C4), while
the 11-cluster partitioning favors again a BPT (panels C5
and C6) as in our preferred 6-cluster one. However we
notice that the difference in the probability for a new
cluster in 2020 is much more pronounced for the 11-
cluster case (best value and 95% confidence interval
respectively 7 and (4–20)%, panel C5) than in the 8-
cluster case (2 and (0.5–5)%, panel C3), compared to
our preferred 6-cluster partitioning. Clearly, a different
definition of clusters heavily influences the model
describing the inter-cluster distribution, and in
particular, the higher the number of identified clusters,
the shorter their inter-time. In any case, the three different
partitions do not provide dramatically different values for
the speculative example of a new cluster in 2040, given no
further EEE the last one in 2007: respectively for the 8- and
11-cluster cases, we find such probability to be 10 and 6%,
with 95% confidence intervals (4–29)% and (3–19)%
(Panels C4 and C6 respectively).

FIGURE 9 | Panel A: Hazard function of the BPT distribution selected as
the preferred model for describing the inter-cluster time intervals (i.e., time
periods between the onset of eruptive cycles), the Lognormal model selected
as the preferred model for describing the intra-cluster IETs (in both
cases, considering the 6-clusters partition), and the Lognormal model
describing all the IETs together without partition into cluster. Inset B: ratio of
the inter-to the intra-cluster hazard function given in panel A, highlighting the
complementary domains over which the two processes are more likely to
explain repose times.
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FIGURE 10 | Summary of the probability for a new EEE (Boxes A and B) or a new cluster (Box C) in the year 2020 (left-column histograms) or 2040 (right-column
histograms) given no new explosive event after the 2007 one. The three Boxes summarize the different data analyzed (all IETs together, intra-cluster IETs and inter-cluster
time intervals, respectively in A, B and C). For the intra- and inter-cluster models, we provide the preferred model selected by AIC (see also Tables 3 and 4) when
considering different cluster partitions (our preferred partition on 6 clusters is highlighted in gray). The histograms in panels (A1) to (C6) have been obtained by
sampling 1,000 times the preferred-model parameters within their uncertainty range (considering covariance when the parameters are more than one) and thus
calculating 1,000 values for the probability. In red we give the probability resulting from the best-fit model parameters, and in each panel we also give the 2.5th and 97.fifth
percentiles of the 1,000 values to show the 95% confidence interval.

Frontiers in Earth Science | www.frontiersin.org January 2021 | Volume 8 | Article 58370315

Sandri et al. Stochastic Modeling of Galeras Eruptions

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles#articles


The approach adopted here to purely describe the intra- and
inter-cluster occurrences in the catalog has a remarkable
limitation: both the distributions adopted for the two
processes share the same time domain (that is the entire real
axis both for IETs within and among clusters). This limitation
does not allow us proposing a single merged model for eruption
forecasting based on the clustering approach. In principle, it
would be possible to overcome this limitation and create a single
consistent model by truncating the IET distributions over
separate time domains for the inter- and intra-cluster
intervals. However, a major problem of such a model in the
present case, characterized by few tens of data, would be to set the
time boundaries necessary to truncate the two distributions in a
meaningful and robust procedure. This is the reason why we
prefer not to truncate them, and stick to a description of the
catalog occurrences within the two identified regimes, separately.

The frequency-size analysis, although performed on a dataset
restricted to the last few decades of activity, returns b-values that
are consistent when considering two separate subsets of the
catalog, spanning different periods of time and magnitude
range. This indicates a common power law on the erupted
mass, linking eruptions of different scale and energy in a
scale-invariant relationship, and implying that there is no
characteristic size in the eruptive process. We acknowledge
that this is not a sufficient proof, but only a possible
hypothesis not confuted by the data we have available at
this stage.

In principle, we could apply the frequency-size analysis to the
clustered data, to find a distribution for the cluster magnitude
(i.e., the total erupted mass in an eruptive cycle), as in the time-
and size-predictable analysis. However, we objectively identified
only 6 clusters, and this number is too low to compute a b-value.
However, this would represent an innovative analysis in eruption
catalogs, and we recommend it as a possible future work for
detailed volcanic records in which many clusters can be isolated.

Finally, we have found that the logarithm of the total erupted
mass in an eruption cycle shows a significant inverse linear
relationship with the time to the following eruption cycle. In
other words, the higher the total erupted mass during an eruptive
cycle, the shorter the time until the start of the successive eruption
cycle. According to this model, if the current cluster will not
experience a mass output much larger than the present output
(from the 2007 eruption) we should expect about 18 years from
now (or about 30 years from last EEE with magnitude ≥2.6 in
2007) for the next cluster to start. It is interesting to note that this
time is similar to the one required by the inter-cluster model for a
new cluster to begin (survivor larger than 5%), and larger than the
probability of an intra-cluster EEE.

Many of the results found in this study on Galeras may be
explained by a simple conceptual model of a volcanic system fed by
two interconnected shallow and deep magma reservoirs, as already
proposed for e.g., Soufriere Hills, Montserrat (Melnik and Costa,
2014), or Colima, Mexico (Massaro et al., 2019). The deep reservoir
feeds the shallow one through a dyke-like structure, and themagma
transfer from the deep to the shallow reservoir is strongly
controlled by the pressure gradient between the two reservoirs.
An eruptive cycle (originating events that determine the intra-

cluster IETs) starts when the magma in the shallow reservoir
overcomes a threshold in a state variable, for example the
overpressure, which can be the result of renewed magma fed
from the deeper reservoir. Meanwhile, the long-term recharging
of the system (originating the inter-cluster time intervals), which
can be primarily modulated by the pressure gradient between the
two reservoirs, may take place in the background;magma flux from
the deeper chamber is likely stimulated as the pressure gradient
increases while an eruptive cycle goes on, revitalizing the system to
start a new eruptive cycle.When looking at the all IETs together, we
best explain the IETs by a Lognormal distribution characterized by
a mean linked to the geometrical mean of the IETs, and by a thick
tail that accounts for longer reposes, characteristic of the times
between the last event in a cycle and the first event of the
subsequent one. The erupted mass in each event does not show
a preferred size. However, when considering clustering, we best
explain the inter-cluster onset times by a BPTmodel. Suchmodel is
usually interpreted as a realization of a point process in which new
activity will occur when a threshold is reached, the overpressure of
the shallow reservoir in our case. In the time between two eruptive
cycles, the shallow system is recharged by the deep one: this
reloading is governed by two components, that are a constant-
rate loading component (also called the drift term, for example a
constant-rate recharging from the deep to the shallow reservoirs)
and a random component (also termed Brownian motion) that
may be due to random stress perturbations on the reservoir system
(for example in terms of variations in the stress field due to regional
seismicity or activity at other nearby volcanoes, or variations in the
deep recharging process). The latter component may thus
randomly disturb the volcanic system causing an aperiodicity in
the mean repose time between eruptive cycles, although in the case
of Galeras we have found that this aperiodicity is weak. The inverse
TPM found for Galeras tells us that the eruptive cycles
characterized by a large total erupted mass can create a higher
pressure gradient between the deep and the shallow reservoirs,
favoring the flux of magma feeding the shallow reservoir.
Conversely, eruptive cycles with a low total erupted mass do
not significantly perturb the pressure in the shallow chamber,
hence the pressure gradient between the two reservoirs,
inhibiting the “eruptability” of shallow magma.

7 CONCLUSION

We have analyzed a catalog of explosion events at Galeras
volcano, with different perspectives, to extract the significant
features of event occurrence when considering onset times,
eruption magnitudes, and the two together.

We first identify as complete the part of the catalog from 1820
with eruption magnitudes 2.6 or larger.

On this complete catalog, the IETs are best described by a
Lognormal model, with a characteristic IET of about 1.6 years.
However, there is a clear tendency for explosion events to cluster
in time, originating eruptive cycles. The identification of such
cycles is inherently subjective: by adopting a set of reasonable
criteria, we identify a preferred partitioning of the events from
1820 with magnitude ≥ 2.6 into 6 clusters. Under this
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partitioning, the distribution of events within a cycle is best
explained by a Lognormal distribution, while onset times
between clusters are best explained by a Brownian Passage
Time model, that can be seen as a delayed Poisson process. The
added value of the clustered model lies in its ability to describe the
re-activation of volcanic activity, through the modeling of inter-
cluster time intervals, with respect to the best-fitting model on all
the IETs together: this latter model forecasts a gradual decline in
the probability of a new event, after an initial peak, which would
unrealistically lead to a vanishing of the explosive activity in case no
event occurs for a prolonged period.

The eruption magnitudes of single eruptive events seem to be
governed by a power law distribution, implying that there is no
characteristic size for single events.

However, when considering the time between eruptive cycles
and the volume erupted during each cycle, we observe an inverse
time-predictability: the larger the volume erupted in the
previous cycle, the shorter we will have to wait for a new
cycle to begin.

These results suggest a simple conceptual model, consisting of
a plumbing system characterized by two magma reservoirs
located at different depths and connected by a dike system. In
this model, the deep storage feeds magma into the shallow one
through a constant-rate process that is randomly perturbed (for
example by regional or local stress variations), triggering a new
cycle onset when a threshold in the overpressure of the shallow
reservoir is reached: a cluster of events in time occurs, consisting
of many small events or few large ones (following, in general, a
power-law distribution), relaxing in turn the shallow reservoir. If
the total erupted volume in the cycle is large, it favors the uprizing
of new magma from the deep reservoir to the shallow one by an
increased pressure gradient between the two. In this way, the
waiting time for a new cycle to begin is shorter.

According to the monitoring observations of the Servicio
Geologico Colombiano (SGC), along with no significant
eruptive activity at Galeras in about a decade, there has been
also lack of geophysical signals that unambiguously indicate new
magma feeding the system. Under this perspective, the last cluster
seems to be over, and a new eruptive event could be classified as
the first one of a new cluster. However, considering our
probability estimates of having either a new eruption in the
current cluster or the start of a new cluster next year, the
preferred 6-clusters partition indicates a larger probability for
a potential new event in the next year as belonging to the previous
cluster rather than opening a new one, whereas when considering
a 11-cluster partitioning, these two probabilities are very similar.
It is worth noting that our analysis strictly focuses on the pure
temporal occurrence of events (above a relatively high
completeness magnitude), regardless of all the other

observables that may further constrain the onset, or the end,
of a cluster, such as the presence or absence of seismic activity,
deformations, or geochemical anomalies. Including such
observations to complement any clustering approach would be
of invaluable support for analyzing recent and frequent activity,
whereas it is less supportive for a long-term analyses, as the one
presented in this article.
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