Options
Zanmar Sanchez, Ricardo
Loading...
6 results
Now showing 1 - 6 of 6
- PublicationOpen AccessDual-Wavelength Polarimetric Lidar Observations of the Volcanic Ash Cloud Produced during the 2016 Etna EruptionLidar observations are very useful to analyse dispersed volcanic clouds in the troposphere mainly because of their high range resolution, providing morphological as well as microphysical (size and mass) properties. In this work, we analyse the volcanic cloud of 18 May 2016 at Mt. Etna, in Italy, retrieved by polarimetric dual-wavelength Lidar measurements. We use the AMPLE (Aerosol Multi-Wavelength Polarization Lidar Experiment) system, located in Catania, about 25 km from the Etna summit craters, pointing at a thin volcanic cloud layer, clearly visible and dispersed from the summit craters at the altitude between 2 and 4 km and 6 and 7 km above the sea level. Both the backscattering and linear depolarization profiles at 355 nm (UV, ultraviolet) and 532 nm (VIS, visible) wavelengths, respectively, were obtained using different angles at 20◦ , 30◦ , 40◦ and 90◦ . The proposed approach inverts the Lidar measurements with a physically based inversion methodology named Volcanic Ash Lidar Retrieval (VALR), based on Maximum-Likelihood (ML). VALRML can provide estimates of volcanic ash mean size and mass concentration at a resolution of few tens of meters. We also compared those results with two methods: Single-variate Regression (SR) and Multi-variate Regression (MR). SR uses the backscattering coefficient or backscattering and depolarization coefficients of one wavelength (UV or VIS in our cases). The MR method uses the backscattering coefficient of both wavelengths (UV and VIS). In absence of in situ airborne validation data, the discrepancy among the different retrieval techniques is estimated with respect to the VALR ML algorithm. The VALR ML analysis provides ash concentrations between about 0.1 µg/m3 and 1 mg/m3 and particle mean sizes of 0.1 µm and 6 µm, respectively. Results show that, for the SR method differences are less than <10%, using the backscattering coefficient only and backscattering and depolarization coefficients. Moreover, we find differences of 20–30% respect to VALR ML, considering well-known parametric retrieval methods. VALR algorithms show how a physics-based inversion approaches can effectively exploit the spectral-polarimetric Lidar AMPLE capability.
206 26 - PublicationOpen AccessSmall-scale volcanic aerosols variability, processes and direct radiative impact at Mount Etna during the EPL-RADIO campaigns(2020-09-16)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; The aerosol properties of Mount Etna's passive degassing plume and its short-term processes and radiative impact were studied in detail during the EPL-RADIO campaigns (summer 2016-2017), using a synergistic combination of observations and radiative transfer modelling. Summit observations show extremely high particulate matter concentrations. Using portable photometers, the first mapping of small-scale (within [Formula: see text] from the degassing craters) spatial variability of the average size and coarse-to-fine burden proportion of volcanic aerosols is obtained. A substantial variability of the plume properties is found at these spatial scales, revealing that processes (e.g. new particle formation and/or coarse aerosols sedimentation) are at play, which are not represented with current regional scale modelling and satellite observations. Statistically significant progressively smaller particles and decreasing coarse-to-fine particles burden proportion are found along plume dispersion. Vertical structures of typical passive degassing plumes are also obtained using observations from a fixed LiDAR station constrained with quasi-simultaneous photometric observations. These observations are used as input to radiative transfer calculations, to obtain the shortwave top of the atmosphere (TOA) and surface radiative effect of the plume. For a plume with an ultraviolet aerosol optical depth of 0.12-0.14, daily average radiative forcings of [Formula: see text] and [Formula: see text], at TOA and surface, are found at a fixed location [Formula: see text] downwind the degassing craters. This is the first available estimation in the literature of the local radiative impact of a passive degassing volcanic plume.647 17 - PublicationOpen AccessMulti-Sensor Analysis of a Weak and Long-Lasting Volcanic Plume Emission(2020)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; Volcanic emissions are a well-known hazard that can have serious impacts on local populations and aviation operations. Whereas several remote sensing observations detect high-intensity explosive eruptions, few studies focus on low intensity and long-lasting volcanic emissions. In this work, we have managed to fully characterize those events by analyzing the volcanic plume produced on the last day of the 2018 Christmas eruption at Mt. Etna, in Italy. We combined data from a visible calibrated camera, a multi-wavelength elastic/Raman Lidar system, from SEVIRI (EUMETSAT-MSG) and MODIS (NASA-Terra/Aqua) satellites and, for the first time, data from an automatic sun-photometer of the aerosol robotic network (AERONET). Results show that the volcanic plume height, ranging between 4.5 and 6 km at the source, decreased by about 0.5 km after 25 km. Moreover, the volcanic plume was detectable by the satellites up to a distance of about 400 km and contained very fine particles with a mean e ective radius of about 7 m. In some time intervals, volcanic ash mass concentration values were around the aviation safety thresholds of 2 103 g m3. Of note, Lidar observations show two main stratifications of about 0.25 km, which were not observed at the volcanic source. The presence of the double stratification could have important implications on satellite retrievals, which usually consider only one plume layer. This work gives new details on the main features of volcanic plumes produced during low intensity and long-lasting volcanic plume emissions.518 89 - PublicationOpen AccessFirst Volcanic Plume Measurements by an Elastic/Raman Lidar Close to the Etna Summit Craters(2018)
; ; ; ; ; ; ; ; ;; ; ; ; ;; olcanic emissions represent a well-known hazard mainly for aviation safety that can be reduced with real time observations and characterization of eruptive activity. In order to mitigate risks from volcanic ash, Lidar observations allow to perform immediate and accurate detection of volcanic plumes, quantify volcanic ash concentration in atmosphere and characterize optical properties of volcanic particles, improving modeling of volcanic ash clouds and their potential impact. From 14 to 17 December, 2013, Mt. Etna, in Italy, showed an intense Strombolian activity from the New South East Crater (NSEC). Lidar measurements were performed in Catania, pointing at a thin volcanic plume, clearly visible and dispersed from the summit craters toward the South East. Real-time Lidar observations captured the complex dynamics of the volcanic plume along with the pulsatory nature of the explosive activity and allowed to analyze the geometrical, optical and microphysical properties of the volcanic ash. Both the aerosol backscattering (beta(A)) and the extinction coefficient (alpha(A)) profiles at 355 nm, and their ratio [the Lidar Ratio (LR)] were measured near the volcanic source using an Elastic/Raman Lidar system. Moreover, calibrated particle linear depolarization values (delta(A)) were obtained from Lidar profiles measured in the parallel and cross polarized channels at 355 nm, thus allowing to characterize the particle shape. The beta(A), LR, and delta(A) values were used to estimate the ash concentration (gamma) profiles in the volcanic plume. This is the first study of optical properties of volcanic particles through Elastic/Raman measurements near volcanic summit craters and one of few studies which quantify the impact of weak eruptive activity in atmosphere, demonstrating that ash concentration from this type of activity was lower than the safety concentration threshold established by the International Civil Aviation Organization.391 47 - PublicationRestrictedSpatio-temporal monitoring by ground-based and air- and space-borne lidars of a moderate Saharan dust event affecting southern Europe in June 2013 in the framework of the ADRIMED/ChArMEx campaign(2017)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;; ; ; ;During the ADRIMED (Aerosol Direct Radiative Impact on the regional climate in the Mediterranean region) special observation period (SOP-1a), conducted in June 2013 in the framework of the ChArMEx (Chemistry-Aerosol Mediterranean Experiment) project, a moderate Saharan dust event swept the Western and Central Mediterranean Basin (WCMB) from west to east during a 9-day period between 16 and 24 June. This event was monitored from the ground by six EARLINET/ACTRIS (European Aerosol Research Lidar Network/Aerosols, Clouds, and Trace gases Research Infrastructure Network) lidar stations (Granada, Barcelona, Naples, Potenza, Lecce and Serra la Nave) and twoADRIMED/ChArMEx lidar stations specially deployed for the field campaign in Cap d’en Font and Ersa, in Minorca and Corsica Islands, respectively. The first part of the study shows the spatio-temporal monitoring of the dust event during its transport over the WCMB with ground-based lidar and co-located AERONET (Aerosol Robotic Network) Sun-photometer measurements. Dust layer optical depths, Ångström exponents, coarse mode fractions, linear particle depolarization ratios (LPDRs), dust layer heights and the dust radiative forcing estimated in the shortwave (SW) and longwave (LW) spectral ranges at the bottom of the atmosphere (BOA) and at the top of the atmosphere (TOA) with the Global Atmospheric Model (GAME), have been used to characterize the dust event. Peak values of the AERONETaerosol optical depth (AOD) at 440 nm ranged between 0.16 in Potenza and 0.37 in Cap d’en Font. The associated Ångström exponent and coarse mode fraction mean values ranged from 0.43 to 1.26 and from 0.25 to 0.51, respectively. The mineral dust produced a negative SWdirect radiative forcing at the BOA ranging from −56.9 to −3.5Wm−2. TheLW radiative forcing at the BOAwas positive, ranging between +0.3 and +17.7 W m-2. The BOA radiative forcing estimates agree with the ones reported in the literature. At the TOA, the SW forcing varied between −34.5 and +7.5 W m−2. In seven cases, the forcing at the TOA resulted positive because of the aerosol strong absorbing properties (0.83 < single-scattering albedo (SSA) < 0.96). The multi-intrusion aspect of the event is examined by means of air- and space-borne lidar measurements, satellite images and back trajectories. The analysis reported in this paper underline the arrival of a second different intrusion of mineral dust observed over southern Italy at the end of the considered period which probably results in the observed heterogeneity in the dust properties.159 7 - PublicationRestrictedContribution of EARLINET/ACTRIS to the summer 2013 Special Observing Period of the ChArMEx project: monitoring of a Saharan dust event over the western and central Mediterranean(2016-07-30)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;Sicard, M. ;Barragan, R. ;Muñoz-Porcar, C. ;Comerón, A. ;Mallet, M. ;Dulac, F. ;Pelon, J. ;Alados Arboledas, L. ;Amodeo, A. ;Boselli, A. ;Bravo-Aranda, J. A. ;D’amico, G. ;Granados Muñoz, M. J. ;Leto, G. ;Guerrero Rascado, J. L. ;Madonna, F. ;Mona, L. ;Pappalardo, G. ;Perrone, M. R. ;Burlizzi, P. ;Rocadenbosch, F. ;Rodríguez-Gómez, A. ;Scollo, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italia ;Spinelli, N. ;Titos, G. ;Wang, X. ;Zanmar Sanchez, R. ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;; ; ; ;In the framework of the Chemistry-Aerosol Mediterranean Experiment (ChArMEx; http://charmex.lsce.ipsl.fr/) initiative, a field campaign took place in the western Mediterranean Basin between 10 June and 5 July 2013 within the ADRIMED (Aerosol Direct Radiative Impact on the regional climate in the MEDiterranean region) project. The scientific objectives of ADRIMED are the characterization of the most common ‘Mediterranean aerosols’ and their direct radiative forcing (column closure and regional scale). During 15–24 June a multiintrusion dust event took place over the western and central Mediterranean Basin. Extra measurements were carried out by some EARLINET/ACTRIS (European Aerosol Research Lidar Network /Aerosols, Clouds, and Trace gases Research InfraStructure Network, http://www.actris.net/) lidar stations in Spain and Italy, in particular on 22 June in support to the flight over southern Italy of the Falcon 20 aircraft involved in the campaign. This article describes the physical and optical properties of dust observed at the different lidar stations in terms ofdust plume centre of mass, optical depth, lidar ratio, and particle depolarization ratio. To link the differences found in the origin of dust plumes, the results are discussed on the basis of back-trajectories and air- and space-borne lidars. This work puts forward the collaboration between a European research infrastructure (ACTRIS) and an international project (ChArMEx) on topics of interest for both parties, and more generally for the atmospheric community.159 10