Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/9129
DC FieldValueLanguage
dc.contributor.authorallHernández, P. A.en
dc.contributor.authorallCalvari, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italiaen
dc.contributor.authorallRamos, A.en
dc.contributor.authorallPérez, N. M.en
dc.contributor.authorallMárquez, A.en
dc.contributor.authorallQuevedo, R.en
dc.contributor.authorallBarrancos, J.en
dc.contributor.authorallPadrón, E.en
dc.contributor.authorallPadilla, G. D.en
dc.contributor.authorallLópez, D.en
dc.contributor.authorallRodríguez Santana, A.en
dc.contributor.authorallMelián, G. V.en
dc.contributor.authorallDionis, S.en
dc.contributor.authorallRodríguez, F.en
dc.contributor.authorallCalvo, D.en
dc.contributor.authorallSpampinato, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italiaen
dc.date.accessioned2014-10-21T07:15:44Zen
dc.date.available2014-10-21T07:15:44Zen
dc.date.issued2014-09en
dc.identifier.urihttp://hdl.handle.net/2122/9129en
dc.description.abstractThe effusion rate is the most important parameter to gatherwhen a volcanic eruption occurs, because it controls the way inwhich a lava body grows, extends and expands, influencing its dimensional properties. Calculation of lava flow volume from thermal images collected by helicopter surveys has been largely used during the last decade for monitoring subaerial effusive eruptions. However, due to the depths where volcanic activity occurs, monitoring submarine volcanic eruptions is a very difficult task. The 2011–2012 submarine volcanic eruption at El Hierro, Canary Islands, has provided a unique and excellent opportunity to monitor eruptive processes occurring on the seabed. The use of a hand-held thermal camera during daily helicopter flights allowed us to estimate for the first time the daily and total erupted magma volumes from a submarine eruption. The volume of magma emitted during this eruption has been estimated at 300 Mm3, giving an average effusion rate of ~25 m3 s−1. Thermal imagery by helicopter proved to be a fast, inexpensive, safe and reliable technique of monitoring volcanic eruptions when they occur on the shallow seabed.en
dc.description.sponsorshipThis research was financially supported by the projects MAKAVOL (MAC/3/C161) from the European Union MAC 2007–2013 Transnational Cooperation Program as well as from the Cabildo Insular de Tenerife. We are also grateful to the staff of El Hierro airport (AENA) for providing logistical support.en
dc.language.isoEnglishen
dc.publisher.nameElsevier Inc NY Journalsen
dc.relation.ispartofRemote sensing of environmenten
dc.relation.ispartofseries/154(2014)en
dc.subjectShallow submarine eruptionen
dc.subjectThermal airborne monitoringen
dc.subjectErupted volumeen
dc.subjectEffusion rateen
dc.titleMagma emission rates fromshallow submarine eruptions using airborne thermal imagingen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber219-225en
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoringen
dc.identifier.doi10.1016/j.rse.2014.08.027en
dc.relation.referencesApplegarth, L. J., Pinkerton, H., James, M. R., & Calvari, S. (2010). Lava flow superposition: The reactivation of flow units in compound flow fields. Journal of Volcanology and Geothermal Research, 194, 100–106. Becerra, R., Guillén, C., & Dóniz, J. (2007). Erupción basáltica fisural al NE del volcán monogénico de Orchilla, El Hierro, Canarias Caracteres geomorfológicos En Lario. In G. J y Silva (Ed.), Contribuciones al estudio del período cuaternario, Aequa, Ávila (pp. 133–134) (in spanish). Calvari, S., Lodato, L., Steffke, A., Cristaldi, A., Harris, A. J. L., Spampinato, L., et al. (2010). The 2007 Stromboli flank eruption: chronology of the events, and effusion rate measurements from thermal images and satellite data. Journal of Geophysical Research, 115(B4), B04201. Calvari, S., Neri, M., & Pinkerton, H. (2003). Effusion rate estimations during the 1999 summit eruption on Mt Etna, and growth of two distinct lava flow fields. Journal of Volcanology and Geothermal Research, 119, 107–123. Calvari, S., Spampinato, L., Lodato, L., Harris, A. J. L., Patrick, M. R., Dehn, J., et al. (2005). Chronology and complex volcanic processes during the 2002–2003 flank eruption at Stromboli volcano (Italy) reconstructed from direct observations and surveys with a handheld thermal camera. Journal of Geophysical Research, 110, B02201. Chadwick,W.W., Wright, I. C., Jr., Schwarz-Schampera, U., Hyvernaud, O., Reymond, D., & de Ronde, C. E. J. (2008). Cyclic eruptions and sector collapses at Monowai submarine volcano, Kermadec arc: 1998–2007. Geochemistry, Geophysics, Geosystems, 9(10), Q10014. http://dx.doi.org/10.1029/2008gc002113. Colman, A., Sinton, J. M., White, S. M., McClinton, J. T., Bowles, J. A., Rubin, K. H., et al. (2012). Effects of variable magma supply on mid-ocean ridge eruptions: Constraints from mapped lava flow fields along the Galápagos Spreading Center. Geochemistry, Geophysics, Geosystems, 13, Q08014. http://dx.doi.org/10.1029/2012GC004163. Deardorff, N. D., Cashman, K. V., & Chadwick, W. W., Jr. (2011). Observations of eruptive plume dynamics and pyroclastic deposits from submarine explosive eruptions at NWRota-1, Mariana arc. Journal of Volcanology and Geothermal Research, 202, 47–59. Dehn, J., Dean, K. G., Engle, K., & Izbekov, P. (2002). Thermal precursors in satellite images of the 1999 eruption of Shishaldin Volcano. Bulletin of Volcanology, 64, 525–534. Garcia, M.O., & Davies, M. G. (2001). Submarine growth and internal structure of ocean island volcanoes based on submarine observations of Mauna Loa volcano, Hawaii. Geology, 29, 163–166. Gee, M. J. R.,Watts, A. B., Masson, D.G., &Mitchell, N. C. (2001). Landslides and the evolution of El Hierro in the Canary Islands. Marine Geology, 177, 271–293. Gimeno, D., Aulinas, M., & Gisbert, G. (2012). Geochemical characterization of the initial phase of El Hierro eruption. Minerals Magazine, 76(6), 1761. González, P. J., Samsonov, S. V., Pepe, S., Tiampo, K. F., Tizzani, P., Casu, F., et al. (2013). Magma storage and migration associated with the 2011–2012 El Hierro eruption: Implications for crustal magmatic systems at oceanic island volcanoes. Journal of Geophysical Research, 118, 4361–4377. Guillou, H., Carracedo, J. C., Pérez Torrado, F. J., & Badiola, E. R. (1996). K–Ar ages and magnetic stratigraphy of a hotspot-induced, fast grown oceanic island: El Hierro, Canary Islands. Journal of Volcanology and Geothermal Research, 73, 141–155. Harris, A. J. L., Dehn, J., & Calvari, S. (2007). Lava effusion rate definition, measurement and operational requirements: A review. Bulletin of Volcanology, 70, 1–22. Harris, A. J. L., Dehn, J., Patrick, M., Calvari, S., Ripepe,M., & Lodato, L. (2005). Lava effusion rates from hand-held thermal infrared imagery: An example from the June 2003 effusive activity at Stromboli. Bulletin of Volcanology, 68, 107–117. Harris, A. J. L., Flynn, L. P., Keszthelyi, L., Mouginis-Mark, P. J., Rowland, S. K., & Resing, J. A. (1998). Calculation of lava effusion rates from Landsat TM data. Bulletin of Volcanology, 60, 52–71. Harris, A. J. L., Steffke, A., Calvari, S., & Spampinato, L. (2011). Thirty years of satellitederived lava discharge rates at Etna: Implications for steady volumetric output. Journal of Geophysical Research, 116, B08204. Hernández Pacheco, A. (1982). Geochemical characterization of the initial phase of El Hierro eruption. Estudios Geológicos, 38, 15–25 (in spanish). Hoernle, K., Tilton, G., & Schmincke, H. U. (1991). Sr–Nd–Pb isotopic evolution of Gran Canaria: Evidence for shallow enriched mantle beneath the Canary Islands. Earth and Planetary Science Letters, 106, 44–63. Hon, K., Kauahikaua, J., Denlinger, R., & Mackay, K. (1994). Emplacement and inflation of pahoehoe sheet flows: Observations andmeasurements of active lava flows on Kilauea Volcano, Hawaii. Geological Society of America Bulletin, 106, 351–370. Ibáñez, J. M., De Angelis, S., Díaz-Moreno, A., Hernández, P. A., Alguacil, G., Posadas, A., et al. (2012). Insights into the 2011–2012 submarine eruption off the coast of El Hierro (Canary Islands, Spain) from statistical analysis of earthquake activity. Geophysical Journal International, 2, 659–670. Kilburn, C. R. J., & Lopes, R. M. C. (1988). The growth of AA lava flow fields on Mount Etna, Sicily. Journal of Geophysical Research, 93(B12), 14759–14772. Longpré, M.A., Klügel, A., Diehl, A., & Stix, J. (2014s). Mixing in mantle magma reservoirs prior to and during the 2011–2012 eruption at El Hierro, Canary Islands. Geology. http://dx.doi.org/10.1130/G351651 (in press). Masson, D.G., Watts, A. B., Geea, M. J. R., Urgeles, R., Mitchell, N. C., Le Bas, T. P., et al. (2002). Slope failures on the flanks of the western Canary Islands. Earth-Science Reviews, 57(1–2), 1–35. Moore, J. G., & Chadwick, W. W. (1995). Offshore geology of Mauna Loa and adjacent areas, Hawaii. In J.M. Rhodes, & J. P. Lockwood (Eds.), Mauna Loa revealed: Structure, composition, history, and hazards. Washington, D.C.: American Geophysical Union http://dx.doi.org/10.1029/GM092p0021. Moore, J. G., Phillips, R. L., Grigg, R. W., Peterson, D. W., & Swanson, D. A. (1973). Flow of lava into the sea, 1969–1971, Kilauea Volcano, Hawaii. Geological Society of America Bulletin, 84, 537–546. Navarro, J. M., & Soler, C. (1994). El agua en El Hierro, Resumen del Avance del Plan Hidrológico Public Cabildo de El Hierro Con OP Gob Canarias. , 1–59 (in Spanish). Nogami, K. (2004). Relationship in chemical composition between mother solution and allophane-like aluminosilicate precipitate through neutralization of acid hydrothermal water by seawater. Earth and Planetary Science Letters, 56(4), 457–462. Nogami, K., Yoshida, M., & Osaka, J. (1993). Chemical composition of discolored seawater around Satsuma-Iwojima, Kagoshima, Japan. Bulletin Volcanologique Society of Japan, 38(3), 71–77. Padilla, G., Hernández, P. A., Padrón, E., Barrancos, J., Pérez, N. M., Melián, G., et al. (2013). Soil gas radon emissions and volcanic activity at El Hierro (Canary Islands): The 2011– 2012 submarine eruption. Geochemistry Geophysics Geosystems, 14(2), 432–447. Padrón, E., Pérez, N.M., Hernández, P. A., Sumino, H.,Melián, G., Barrancos, J., et al. (2013). Diffusive helium emissions as a precursory sign of volcanic unrest. Geology, 41, 539–542. Pérez, N. M., Padilla, G. D., Padrón, E., Hernández, P. A., Melián, G. V., Barrancos, J., et al. (2012). Precursory diffuse CO2 and H2S emission signatures of the 2011–2012 El Hierro submarine eruption: Canary Islands. Geophysical Research Letters, 39, L16311. Pinkerton, H., James, M., & Jones, A. (2002). Surface temperature measurements of active lava flows on Kilauea Volcano, Hawaii. Journal of Volcanology and Geothermal Research, 113, 159–176. Resing, J., Rubin, K. H., Embley, R., Lupton, J., Baker, E. T., Dziak, R., et al. (2011). Active submarine eruption of boninite in the northeastern Lau Basin. Nature Geoscience, 4, 799–806. http://dx.doi.org/10.1038/NGEO1275. Rivera, J., Lastras, G., Canals, M., Acosta, J., Arrese, B., Hermida, N., et al. (2013). Construction of an oceanic island: Insights from the El Hierro (Canary Islands) 2011–2012 submarine volcanic eruption. Geology, 41, 355–358. Sagiya, T., Barrancos, J., Calvo, D., Padrón, E., Padilla, G., Hernández, P. A., et al. (2012). Crustal deformation during the 2011 volcanic crisis of El Hierro, Canary Islands, revealed by continuous GPS observation. EGU Reference Shelf, 14, EGU. Sinton, J., Bergmanis, E., Rubin, K., Batiza, R., Gregg, T. K. P., Gronvold, K., et al. (2002). Volcanic eruptions on mid-ocean ridges: New evidence from the superfast spreading East Pacific Rise, 17°–19°S. Journal of Geophysical Research, 107(B6), 2115. http://dx. doi.org/10.1029/2000JB000090. Spampinato, L., Calvari, S., Oppenheimer, C., & Boschi, E. (2011). Volcano surveillance using infrared cameras. Earth-Science Reviews, 106, 63–91. Spampinato, L., Calvari, S., Oppenheimer, C., & Lodato, L. (2008). Shallow magma transport for the 2002–3 Mt Etna eruption inferred from thermal infrared surveys. Journal of Volcanology and Geothermal Research, 177(2), 301–312. Stroncik, N. A., Klügel, A., & Hansteen, T. H. (2009). The magmatic plumbing system beneath El Hierro (Canary Islands): Constraints from phenocrysts and naturally quenched basaltic glasses in submarine rocks. Control Mining Petroleum, 157(5), 593–607. Thordarson, T., & Larsen, G. (2007). Volcanismin Iceland in historical time: Volcano types, eruption styles and eruptive history. Journal of Geodynamics, 43, 118–152. Tribble, G. W. (1991). Underwater observations of active lava flows from Kilauea volcano, Hawaii. Geology, 19, 633–636. Wadge, G. (1981). The variation of magma discharge during basaltic eruption. Journal of Volcanology and Geothermal Research, 11, 139–168. Wright, R., Blake, S., Harris, A. J. L., & Rothery, D. A. (2001). A simple explanation for the space-based calculation of lava eruption rates. Earth and Planetary Science Letters, 192, 223–233. Xie, C. (2012). Interactiveen
dc.description.obiettivoSpecifico5V. Sorveglianza vulcanica ed emergenzeen
dc.description.journalTypeJCR Journalen
dc.description.fulltextrestricteden
dc.relation.issn0034-4257en
dc.relation.eissn1879-0704en
dc.contributor.authorHernández, P. A.en
dc.contributor.authorCalvari, S.en
dc.contributor.authorRamos, A.en
dc.contributor.authorPérez, N. M.en
dc.contributor.authorMárquez, A.en
dc.contributor.authorQuevedo, R.en
dc.contributor.authorBarrancos, J.en
dc.contributor.authorPadrón, E.en
dc.contributor.authorPadilla, G. D.en
dc.contributor.authorLópez, D.en
dc.contributor.authorRodríguez Santana, A.en
dc.contributor.authorMelián, G. V.en
dc.contributor.authorDionis, S.en
dc.contributor.authorRodríguez, F.en
dc.contributor.authorCalvo, D.en
dc.contributor.authorSpampinato, L.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptEnvironmental Research Division, ITER, Tenerife/Spain-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia-
crisitem.author.deptEnvironmental Research Division, ITER, Tenerife/Spain-
crisitem.author.deptInstituto de Geofìsica, Universidad Nacional Autonoma de Mexico, Ciudad Universitaria Del. Coyoacan-
crisitem.author.deptEnvironmental Research Division, ITER, Tenerife/Spain-
crisitem.author.deptEnvironmental Research Division, ITER, Tenerife/Spain-
crisitem.author.deptEnvironmental Research Division, ITER, Tenerife/Spain-
crisitem.author.deptTelespazio-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia-
crisitem.author.orcid0000-0003-4707-515X-
crisitem.author.orcid0000-0001-8189-5499-
crisitem.author.orcid0000-0002-4555-8484-
crisitem.author.orcid0000-0001-6160-7234-
crisitem.author.orcid0000-0002-0809-9135-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Hernandez et al 2014.pdfmain article2.02 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

6
checked on Feb 7, 2021

Page view(s) 50

391
checked on Apr 24, 2024

Download(s)

47
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric