Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/9082
DC FieldValueLanguage
dc.contributor.authorallSperanza, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallMinelli, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.date.accessioned2014-09-08T14:17:06Zen
dc.date.available2014-09-08T14:17:06Zen
dc.date.issued2014en
dc.identifier.urihttp://hdl.handle.net/2122/9082en
dc.description.abstractHigh-resolution tomography from the 2009 L’Aquila extensional seismic sequence has shown that the Mw 6.1 main shock and most of the aftershocks occurred within a high velocity body (6.6≤Vp≤6.8 Km/s), located between depths of 3 and 12 km. The nature of the high Vp-body has remained speculative, although exhumed mafic deep crustal and upper mantle rocks (serpentinites) have been favoured. We used 3D magnetic anomaly modelling to investigate the plausibility of these favoured sources for the L’Aquila body. The modelling does not support the presence of high-velocity serpentinites with a 30-50% serpentinization degree and gabbros. Accordingly, we conclude that the high Vp-body may represent non-magnetic upper Triassic and possibly lower Liassic dolomites that have been drilled in neighbouring wells for 2-4 km. This conclusion is also consistent with the lack of a coherent gravity anomaly for the body. We speculate that ultra-thick Triassic dolomites reaching a thickness of 8 km may have been deposited in syntectonic wedges formed at the northern margin of the Ionian Sea, where oceanic spreading occurred in mid-late Triassic times.en
dc.language.isoEnglishen
dc.publisher.nameAmerican Geophysical Unionen
dc.relation.ispartofJournal of geophysical research - solid earthen
dc.relation.ispartofseries9/119 (2014)en
dc.subjectL’Aquila earthquakeen
dc.subjectseismic tomographyen
dc.subjectmagnetic anomaliesen
dc.subjectmagnetic modellingen
dc.subjectdolomites;en
dc.subjectApenninesen
dc.titleUltra-thick Triassic dolomites control the rupture behavior of the central Apennine seismicity: Evidence from magnetic modeling of the L’Aquila fault zoneen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber6756–6770en
dc.subject.INGV04. Solid Earth::04.05. Geomagnetism::04.05.04. Magnetic anomaliesen
dc.identifier.doi10.1002/2014JB011199en
dc.relation.referencesAdamoli, L., 1992. Evidenze di tettonica d’inversione nell’area Corno Grande–Corno Piccolo (Gran Sasso d’Italia). Boll. Soc. Geol. Ital. 111, 53–66. Adamoli, L., Bigozzi, A., Ciarapica, G., Cirilli, S., Passeri, L., Romano, A., Duranti, F., Venturi, F., 1990. Upper Triassic bituminous facies and Hettangian pelagic facies in the Gran Sasso range. Boll. Soc. Geol. Ital. 109, 219–230. AGIP SpA Italia, 1981, Carta Magnetica–Anomalie del Campo magnetico residuo, scale 1:500,000, San Donato Milanese, Italy. Anzidei, M., E. Boschi, V. Cannelli, R. Devoti, A. Esposito, A. Galvani, D. Melini, G. Pietrantonio, F. Riguzzi, V. Sepe, and E. Serpelloni, 2009. Coseismic deformation of the destructive April 6, 2009 L’Aquila earthquake (central Italy) from GPS data. Geophys. Res. Lett. 36, L17307, doi: 10.1029/2009GL039145. Argnani, A., 2005. Possible record of a Triassic ocean in the Southern Apennines. Boll. Soc. Geol. It., 124, 109-121. Atzori, S., Hunstad, I., Chini, M., Salvi, S., Tolomei, C., Bignami, C., Stramondo, S., Trasatti, E., Antonioli, A. and Boschi, E., 2009. Finite fault inversion of DInSAR coseismic displacement of the 2009 L_Aquila earthquake (central Italy). Geophys. Res. Lett., 36, L15305. Bagnaia, R., D’Epifanio, A., Sylos Labini, S., 1989. Aquila and Subequan basins: an example of quaternary evolution in the Central Apennines, Italy. Quat. Nova 1, 1–23. Bally, A.W., Burbi, L., Cooper, C. and Ghelardoni, R., 1986. Balanced sections and seismic reflection profiles across the Central Apennines. Soc. Geol. Ital. Mem., 35, 257–310. Barchi, M.R., Minelli, G., and Pialli, G., 1998. The CROP03 profile: a synthesis of results on deep structures of the Northern Apennines. Mem. Soc. Geol. It., 52, 383–400. Bianchi, I., C. Chiarabba, and N. Piana Agostinetti, 2010. Control of the 2009 L’Aquila earthquake, central Italy, by a high‐velocity structure: A receiver function study. J. Geophys. Res., 115, B12326, doi:10.1029/2009JB007087. Bigi, S., Casero, P. and Ciotoli, G., 2011. Seismic interpretation of the Laga basin; constraints on the structural setting and kinematics of the Central Apennines. J. Geol. Soc. London, 168, 179–190. Bigi, S., Casero, P., Chiarabba, C., Di Bucci, D., 2013. Contrasting surface active faults and deep seismogenic sources unveiled by the 2009 L’Aquila earthquake sequence (Italy). Terra Nova 25, 21-29. Boncio, P., Pizzi, A., Brozzetti, F., Pomposo, G., Lavecchia, G., Di Naccio, D., Ferrarini, F., 2010. Coseismic ground deformation of the 6 April 2009 L’Aquila earthquake (central Italy, Mw 6.3). Geophys. Res. Lett., 37, L06308, doi: 10.1029/2010GL042807. Bronner, A., Sauter, D., Munschy, M., Carlut, J., Searle, R., Cannat, M., Manatschal, G., 2014. Magnetic signature of large exhumed mantle domains of the Southwest Indian Ridge: results from a deep-tow geophysical survey over 0 to 11 Ma old seafloor. Solid Earth, in press. Calamita, F., Esestime, P., Paltrinieri, W., Scisciani, V., and Tavarnelli, E., 2009. Structural inheritance of pre- and synorogenic normal faults on the arcuate geometry of Pliocene–Quaternary thrusts: Examples from the Central and Southern Apennine Chain. Italian Journal of Geosciences, v. 128, 2, 381–394. Caratori Tontini, F., Stefanelli, P., Giori, I., Faggioni, O., and Carmisciano, C., 2004. The revised aeromagnetic anomaly map of Italy. Ann. Geophys., 47, 1547–1555. Catalano, R., Di Stefano, P., and Kozur, H., 1991. Permian circumpacific deep-water faunas from the western Tethys (Sicily, Italy) – new evidences for the position of the Permian Tethys. Palaeogeogr. Palaeoclimatol. Palaeoecol. , 87, 75-108. Cavinato G.P., and De Celles P.G. 1999. Extensional basins in the tectonically bimodal central Apennines fold-thrust belt, Italy: response to corner flow above a subducting slab in retrograde motion. Geology, 27, 956-959. Cheloni, D., M. D’Agostino, E. D’Anastasio, A. Avallone, S. Mantenuto, R. Giuliani, M. Mattone,S. Calcaterra, P. Gambino, and D. Dominici, 2010. Coseismic and initial post‐seismic slip of the 2009 Mw 6.3 L’Aquila earthquake, Italy, from GPS measurements. Geophys. J. Int., 181, 3, 1539–1546. Chen, W.-P., Yu, C.-Q., Tseng, T.-L., Yang, Z., Wang, C.-y., Ning, J., Leonard, T., 2013. Moho, seismogenesis, and rheology of the lithosphere. Tectonophys. 609, 491-503. Chiappini, M., Meloni, A., Boschi, E., Faggioni, O., Beverini, N., Carmisciano, C., and Marson, I., 2000. Shaded relief total field magnetic anomaly map of Italy and surrounding marine areas at sea level. Ann. Geofis., 43, 983–989. Chiarabba, C., Amato, A., Anselmi, M., Baccheschi, P., Bianchi, I., Cattaneo, M., Cecere, G., Chiaraluce, L., Ciaccio, M.G., De Gori, P., De Luca, G., Di Bona, M., Di Stefano, R., Faenza, L., Govoni, A., Improta, L., Lucente, F.P., Marchetti, A., Margheriti, L., Mele, F., Michelini, A., Monachesi, G., Moretti, M., Pastori, M., Piana Agostinetti, N., Piccinini, D., Roselli, P., Seccia, D. and Valoroso, L., 2009. The 2009 L_Aquila (central Italy) MW6.3 earthquake: main shock and aftershocks. Geophys. Res. Lett., 36, L18308 doi:10.1029/2009GL039627. Chiarabba, C., S. Bagh, I. Bianchi, P. De Gori, and M. Barchi, 2010. Deep structural heterogeneities and the tectonic evolution of the Abruzzi region (central Apennines, Italy) revealed by microseismicity, seismic tomography and teleseismic receiver functions. Earth Planet. Sci. Lett., 295, 462–476, doi:10.1016/j.epsl.2010.04.028. Chiaraluce, L., Valoroso, L., Piccinini, D., Di Stefano, R. and De Gori, P., 2011. The anatomy of the 2009 L_Aquila normal fault system (Central Italy) imaged by high resolution foreshock and aftershock locations. J. Geophys. Res., 116, B12311, doi:10.1029/2011JB008352. Ciarapica, G., 2007. Regional and global changes around the Triassic- Jurassic boundary reflected in the late Norian-Hettangian history of the Apennine basins. Palaeogeogr. Palaeoclimatol. Palaeoecol. 244, 34–51, doi:10.1016/j.palaeo.2006.06.022. Cinti, F.R., Pantosti, D., De Martini, P.M., Pucci, S., Civico, R., Pierdominici, S., Cucci, L., Brunori, C. A., Pinzi, S., Patera, A., 2011. Evidence for surface faulting events along the Paganica fault prior to the 6 April 2009 L'Aquila earthquake (central Italy). J. Geophys. Res., 116, B7, doi: 10.1029/2010JB007988. Cipollari, P., Cosentino, D., Esu, D., Girotti, O., Gliozzi, E., Praturlon, A., 1999. Thrust-top lacustrine-lagoonal basin development in accretionary wedges: late Messinian (Lago Mare) episode in the central Apennines (Italy). Palaeogeogr. Palaeoclimatol. Palaeoecol. 151, 149-166. Consiglio Nazionale delle Ricerche, 1988. Carta delle Litofacies del Lazio-Abruzzo ed aree limitrofe, G. Accordi and F. Carbone eds., Rome, Italy. Consiglio Nazionale delle Ricerche, 1991. Structural model of Italy and gravity map, scale 1:500,000, Progetto Finalizzato Geodinamica, Rome, Italy. Costruzioni Generali Spa Milano, 1979. Gran Sasso, il Traforo Autostradale, 267 pp., Rome, Italy. D’Agostino, N., Chamot-Rooke, N., Funiciello, R., Jolivet, L., Speranza, F., 1998. The role of pre-existing thrust faults and topography on the styles of extension in the Gran Sasso range (central Italy). Tectonophys. 292, 229–254. de Voogd, B., Truffert, C., Chamot-Rooke, N., Huchon, P., Lallemant, S., Le Pichon, X., 1992. Two-ship deep seismic soundings in the basins of the eastern Mediterranean Sea (Pasiphae cruise). Geophys. J. Int. 109, 536-552. Di Stefano, R., Chiarabba, C., Chiaraluce, L., Cocco, M., De Gori, P., Piccinini, D., Valoroso, L., 2011. Fault properties heterogeneity affecting the rupture evolution of the 2009 (MW 6.1) L’Aquila earthquake (Central Italy): insights from seismic tomography. Geophys. Res. Lett. 38. http://dx.doi.org/10.1029/2011GL047365. Durrheim, R.J., and Cooper, G.R.J., 1998. Euldep: a program for the Euler deconvolution of magnetic and gravity data, Computer & Geosciences, 24 (6), 545-550. Fichler, C., Odinsen, T., Rueslatten, H., Olesen, O., Vindstad, J.E., Wienecke, S., 2011. Crustal inhomogeneities in the Northern North Sea from potential field modelling: Inherited structure and serpentinites?. Tectonophys. 510, 172-185. Gee, J., Kent, D.V., 1994. Variations in layer 2A thickness and the origin of the central anomaly magnetic high. Geophys. Res. Lett. 21, 297-300. Ghisetti, F. and Vezzani, L., 1986. Carta Geologica del Gruppo M. Siella– M. Camicia – M. Prena – M. Brancastello (Gran Sasso d’Italia, Abruzzo), Scale 1:15 000. Ghisetti, F. and Vezzani, L., 1991. Thrust belt development in the central Apennines: northward polarity of thrusting and out-of-sequence deformations in the Gran Sasso chain (Italy). Tectonics, 10, 904–919. Ghisetti, F., Barchi, M., Bally, A. W., Moretti, I., and Vezzani, L., 1993. Conflicting balanced structural sections across the Central Apennines (Italy): problems and implications, in: Spencer, A. M. (Ed.): Generation, Accumulation and Production of Europe’s Hydrocarbons III, Special Publication of the European Association of Petroleum Geoscientists No. 3, pp. 219–231, Springer- Verlag Berlin Heidelberg. Hill, K.C., Hayward, A.B., 1988. Structural constraints on the Tertiary plate tectonic evolution of Italy. Marine and Petroleum Geology, 5, 2–16. Hinze, W.J., von Frese, R.R.B., and Saad, A.H., 2013, Gravity and magnetic exploration. Principles, practices, and applications, Cambridge University Press, New York, 512 pp. Improta, L., Villani, F., Bruno, P.P., Castiello, A., De Rosa, D., Varriale, F., Punzo, M., Brunori, C.A., Civico, R., Pierdominici, S., Berlusconi, A., Giacomuzzi, G., 2012. High-resolution controlled-source seismic tomography across the Middle Aterno basin in the epicentral area of the 2009, Mw 6.3, L’Aquila earthquake (central Apennines, Italy). Ital. J. Geosci. 131, 373-388. Kadzialko-Hofmokl, M., Jelenska, M., Bylina, P., Dubinska, E., Delura, K., Nejbert, K., 2006. Paleomagnetism of Palaeozoic ultrabasic rocks from the Sudetes Mts (SW Poland): tectonic implications. Geophys. J. Int. 167, 24-42. Kikawa, E., Ozawa, K., 1992. Contribution of oceanic gabbros to sea-floor spreading magnetic anomalies. Science 258, 796-799. Lagabrielle, Y., Bodinier, J., 2008. Submarine reworking of exhumed subcontinental mantle rocks: field evidence from the Lherz peridotites, French Pyrenees. Terra Nova 20, 11-21. Lanza, R., Meloni, A., 2006. The Earth’s Magnetism: An Introduction for Geologists, 278 pp., Springer, New York. Maffione, M., A. Morris, O. Plumper, and D. J. J. van Hinsbergen, 2014. Magnetic properties of variably serpentinized peridotites and their implication for the evolution of oceanic core complexes, Geochem. Geophys. Geosyst., 15, doi: 10.1002/ 2013GC004993. Mazzoli, S., S. Corrado, M. De Donatis, D. Scrocca, R. W. H. Butler, D. Di Bucci, G. Naso, C. Nicolaj, and V. Zucconi, 2000. Time and space variability of ‘‘thin skinned’’ and ‘‘thick skinned’’ thrust tectonics in the Apennines (Italy). Rend. Accad. Naz. Lincei 11(1), 5–39. Mostardini, E., and S. Merlini, 1986. Appennino centro‐meridionale: Sezioni geologiche e proposta di modello strutturale. Mem. Soc. Geol. Ital., 35, 177–202. Oufi, O., Cannat, M., and Horen, H., 2002. Magnetic properties of variably serpentinized abyssal peridotite: Journal of Geophysical Research, 107, B5, 3-19, doi:10.1029/2001JB000549. Patacca, E., P. Scandone, E. Di Luzio, G. P. Cavinato, and M. Parotto, 2008. Structural architecture of the central Apennines: Interpretation of the CROP 11 seismic profile from the Adriatic coast to the orographic divide. Tectonics, 27, TC3006, doi:10.1029/2005TC001917. Pignatelli, A., Nicolosi, I., Carluccio, R., Chiappini, M., von Frese, R., 2011. Graphical interactive generation of gravity and magnetic fields. Computers & Geosciences 37, 567-572. Pullaiah, G, Irving, E., Buchan, K.L., Dunlop, D.J., 1975. Magnetization changes caused by burial and uplift. Earth and Planet. Sci. Lett. 28, 133-143. Reid, A. B., Allsop, J. M., Gransen, H., Millet, A. J., Somerton, I. W., 1990. Magnetic interpretation in three dimensions using Euler deconvolution. Geophysics 55, 80–91. Rochette, P., 1994. Comments on “Anisotropic magnetic susceptibility in the continental lower crust and its implication for the shape of magnetic anomalies” by G. Florio et al., Geophys. Res. Lett. 21, 2773-2774. Satolli, S., Speranza, F., and Calamita, F., 2005. Paleomagnetism of the Gran Sasso range salient (central Apennines, Italy): Pattern of orogenic rotations due to translation of a massive carbonate indenter. Tectonics, 24, TC4019, doi: 10.1029/2004TC001771. Scisciani, V., Tavarnelli, E., and Calamita, F., 2002. The interaction of extensional and contractional deformations in the outer zones of the Central Apennines, Italy. Journal of Structural Geology, 24, 1647–1658, doi: 10.1016/S0191-8141(01)00164-X. Scisciani, V., Agostini, S., Calamita, F., Pace, P., Cilli, A., Giori, I., and Paltrinieri, W., 2014. Positive inversion tectonics in foreland fold-and-thrust belts: a reappraisal of the Umbria-Marche Northern Apennines (Central Italy) by integrating geological and geophysical data, Tectonophys., submitted. Scognamiglio, L., Tinti, E., Michelini, A., Dreger, D.S., Cirella, A., Cocco, M., Mazza, S., Piatanesi, A., 2010. Fast determination of moment tensors and rupture history: what has been learned from the 6 April 2009 L’Aquila earthquake sequence. Seismol. Res. Lett. 81 (6). http://dx.doi.org/10.1785/gssrl.81.6.892 Servizio Geologico d’Italia, 2006. Carta Geologica d’Italia alla scala 1:50.000, Foglio 359 L’Aquila. Shive, P.N., Frost, B.R. and Peretti, A., 1988. The magnetic properties of metaperidotitic rocks as a function of metamorphic grade; Implications for crustal magnetic anomalies. Journal of Geophysical Research 93: doi: 10.1029/88JB00489. Speranza, F., Chiappini, M., 2002. Thick-skinned tectonics in the external Apennines, Italy: New evidence from magnetic anomaly analysis. J. Geophys. Res. 107, 2290, doi: 10.1029/2000JB000027. Speranza, F., Adamoli, L., Maniscalco, R., Florindo, F., 2003. Genesis and evolution of a curved mountain front: Paleomagnetic and geological evidence from the Gran Sasso range (central Apennines, Italy). Tectonophys. 362, 183–197. Speranza, F., L. Minelli, A. Pignatelli, and M. Chiappini, 2012. The Ionian Sea: The oldest in situ ocean fragment of the world?. J. Geophys. Res., 117, B12101, doi:10.1029/2012JB009475. Stampfli, G.M, Borel, G.D., 2002. A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrons. Earth and Planet. Sci. Lett. 196, 17-33. Sutra, E., Manatschal, G., 2012. How does the continental crust thin in a hyperextended rifted margin? Insights from the Iberia margin. Geology 40, 139-142. Tozer, R.S.J., Butler, R.W.H., and Corrado, S., 2002. Comparing thin- and thick-skinned thrust tectonic models of the Central Apennines, Italy, in Bertotti, G., Schulmann, K., and Cloetingh, S.A.P.L., eds., Continental Collision and the Tectono-sedimentary Evolution of Forelands: Stephan Mueller Special Publication, 181–194. Valoroso, L., Chiaraluce, L., Piccinini, D., Di Stefano, R., Schaff, D., and Waldhauser, F., 2013. Radiography of a normal fault system by 64,000 high-precision earthquake locations: The 2009 L’Aquila (central Italy) case study. Journal of Geophysical Research, 118, 1–21, doi: 10.1002/jgrb.50130. ViDEPI, 2010. ProgettoViDEPI – Visibilità Dati Esplorazione Petrolifera in Italia 2009-2010 - Ministero dello Sviluppo Economico UNMIG – Soc. Geol. It. -Assomineraria. On-line database. http://unmig.sviluppoeconomico.gov.it/videpi/default.htm Wasilewski, P.J., and Mayhew, M.A., 1992, The Moho as a magnetic boundary: Geophys. Res. Lett., v. 19, p. 2259-2262.en
dc.description.obiettivoSpecifico7A. Geofisica di esplorazioneen
dc.description.journalTypeJCR Journalen
dc.description.fulltextrestricteden
dc.relation.issn0148-0227en
dc.contributor.authorSperanza, F.en
dc.contributor.authorMinelli, L.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.orcid0000-0001-5492-8670-
crisitem.author.orcid0000-0002-9395-3905-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Speranza & Minelli, 2014.pdfmain article16.75 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

13
checked on Feb 10, 2021

Page view(s) 20

365
checked on Apr 24, 2024

Download(s) 50

71
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric