Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/8729
DC FieldValueLanguage
dc.contributor.authorallAlfonsi, Lu.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallSpogli, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallPezzopane, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallRomano, V.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallZuccheretti, E.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallDe Franceschi, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallCabrera, M. A.; Laboratorio de Telecomunicaciones, DEEC, FACET, Universidad Nacional de Tucumán, Tucumán, Argentinaen
dc.contributor.authorallEzquer, R. G.; Laboratorio de Ionósfera, Departamento de Física, FACET, Universidad Nacional de Tucumán, Tucumán, Argentina.en
dc.date.accessioned2013-08-01T08:34:50Zen
dc.date.available2013-08-01T08:34:50Zen
dc.date.issued2013-07-01en
dc.identifier.urihttp://hdl.handle.net/2122/8729en
dc.description.abstractWe analyze data recorded from October 2010 to September 2011, during the ascending phase of the 24th solar cycle, from an Advanced Ionospheric Sounder-Istituto Nazionale di Geofisica e Vulcanologia ionosonde and a GPS Ionospheric Scintillation and total electron content (TEC) monitor scintillation receiver, colocated at low latitude in the Southern American longitudinal sector (Tucumán, 26.9°S, 294.6°E, magnetic latitude 15.5°S, Argentina). The site offers the opportunity to perform spread-F and GPS scintillation statistics of occurrence under the southern crest of the equatorial ionospheric anomaly. Spread-F signatures, classified into four types (strong range spread-F (SSF), range spread-F, frequency spread-F (FSF), and mixed spread-F), the phase and amplitude scintillation index (σΦ and S4, respectively), the TEC, and the rate of TEC parameter, marker of the TEC gradients, that can cause scintillations, are considered. The seasonal behavior results as follows: the occurrence of all four types of spread-F is higher in summer and lower in winter, while the occurrence of scintillations peaks at equinoxes in the postsunset sector and shows a minimum in winter. The correspondence between SSF and scintillations seems to be systematic, and a possible correlation between S4 and FSF peaks is envisaged at the terminator. The investigation focused also on two particular periods, from 12 to 16 March 2011 and from 23 to 29 September 2011, both characterized by the simultaneous presence of SSF signatures and scintillation phenomena, allowing to discuss the role of traveling ionospheric disturbances as a strong candidate causing ionospheric irregularities.en
dc.language.isoEnglishen
dc.publisher.nameAmerican Geophysical Unionen
dc.relation.ispartofJournal of geophysical research - space physicsen
dc.relation.ispartofseries/ 118 (2013)en
dc.subjectequatorial ionosphereen
dc.subjectscintillationen
dc.subjectspread-Fen
dc.titleComparative analysis of spread-F signature and GPS scintillation occurrences at Tucumán, Argentinaen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber4483–4502en
dc.subject.INGV01. Atmosphere::01.02. Ionosphere::01.02.05. Wave propagationen
dc.subject.INGV01. Atmosphere::01.02. Ionosphere::01.02.06. Instruments and techniquesen
dc.subject.INGV01. Atmosphere::01.02. Ionosphere::01.02.07. Scintillationsen
dc.subject.INGV05. General::05.07. Space and Planetary sciences::05.07.99. General or miscellaneousen
dc.identifier.doi10.1002/jgra.50378en
dc.relation.referencesAarons, J. (1991), The role of the ring current in the generation or inhibition of equatorial F layer irregularities during magnetic storms, Radio Sci., 26, 1131–1149, doi:10.1029/91RS00452. Aarons, J. (1997), Global Positioning System phase fluctuations at auroral latitudes, J. Geophys. Res., 102, 17,219–17,231, doi:10.1029/97JA01118. Abdu, M. A., I. S. Batista, I. J. Kantor, and J. H. A. Sobral (1982), Gravity wave induced ionization layers in the night F-region over Cachoeira Paulista (22°S, 45°W), J. Atmos. Terr. Phys., 44, 759–767, doi:10.1016/ 0021-9169(82)90004-6. Abdu, M. A., E. A. Kherani, I. S. Batista, and J. H. A. Sobral (2009), Equatorial evening prereversal vertical drift and spread F suppression by disturbance penetration electric fields, Geophys. Res. Lett., 36, L19103, doi:10.1029/2009GL039919. Abdu, M. A., I. S. Batista, B. W. Reinisch, J. W. MacDougall, E. A. Kherani, and J. H. A. Sobral (2012), Equatorial range spread F echoes from coherent backscatter, and irregularity growth processes, from conjugate point digital ionograms, Radio Sci., 47, RS6003, doi:10.1029/2012RS005002. Alfonsi, L., G. De Franceschi, V. Romano, A. Bourdillon, and M. Le Huy (2011a), GPS scintillations and TEC gradients at equatorial latitudes on April 2006, Adv. Space Res., 47, 1750–1757, doi:10.1016/j. asr.2010.04.020. Alfonsi, L., L. Spogli, G. De Franceschi, V. Romano, M. Aquino, A. Dodson, and C. N. Mitchell (2011b), Bipolar climatology of GPS ionospheric scintillation at solar minimum, Radio Sci., 46, RS0D05, doi:10.1029/ 2010RS004571. Bagiya, M. S., and R. Sridharan (2011), Evolutionary phases of equatorial spread F including L band scintillations and plumes in the context of GPS total electron content variability: A case study, J. Geophys. Res., 116, A10304, doi:10.1029/2011JA016893. Beniguel, Y., et al. (2009), Ionospheric scintillation monitoring and modelling, Ann. Geophys., 52(3/4), 391–416. Biktash, L. Z. (2004), Role of the magnetospheric and ionospheric currents in the generation of the equatorial scintillations during geomagnetic storms, Ann. Geophys., 22, 3195–3202, 1432-0576/ag/2004-22-3195. Burke, W. J., R. C. Sagalyn, R. G. Rastogi, M. Ahmed, F. J. Rich, D. E. Donatelli, and P. J. L. Wildman (1979), Postsunrise refilling of the low-latitude topside ionosphere, J. Geophys. Res., 84, 4201–4206, doi:10.1029/JA084iA08p04201. Cabrera, M. A., M. Pezzopane, E. Zuccheretti, and R. G. Ezquer (2010), Satellite traces, range spread F occurrence, and gravity wave propagation at the southern anomaly crest, Ann. Geophys., 28(5), 1133–1140, doi:10.5194/angeo-28-1133-2010. Cerruti, A. P., P. M. Kintner, Jr., D. E. Gary, A. J. Mannucci, R. F. Meyer, P. Doherty, and A. J. Coster (2008), Effect of intense December 2006 solar radio bursts on GPS receivers, Space Weather, 6, S10D07, doi:10.1029/ 2007SW000375. Chatterjee, S., S. K. Chakraborty, and S. Majumdar (2013), Summer time scintillations near the transition zone of the Indian longitude sector, J. Atmos. Sol. Terr. Phys., 95–96, 102–115, doi:10.1016/j.jastp.2013.01.017. Chen, W. S., C. C. Lee, J. Y. Liu, F. D. Chu, and B. W. Reinisch (2006), Digisonde spread F and GPS phase fluctuations in the equatorial ionosphere during solar maximum, J. Geophys. Res., 111, A12305, doi:10.1029/2006JA011688. Chen, W.-S., C.-C. Lee, F.-D. Che, and S.-Y. Su (2011), Spread F, GPS phase fluctuations, and medium-scale traveling ionospheric disturbances over Wuhan during solar maximum, J. Atmos. Sol. Terr. Phys., 73, 528–533, doi:10.1016/j.jastp.2010.11.012. Dabas, R. S., L. Singh, D. R. Lakshmi, P. Subramanyam, P. Chopra, and S. C. Garg (2003), Evolution and dynamics of equatorial plasma bubbles: Relationships to E × B drift, postsunset total electron content enhancements and equatorial electrojet strength, Radio Sci., 38(4), 1075, doi:10.1029/2001RS002586. Danielson, G. C., and C. Lanczos (1942), Some improvements in practical Fourier analysis and their application to X-ray scattering from liquids, J. Franklin Inst., 233, 435–452. Das Gupta, A., and L. Kersley (1976), Summer daytime scintillation and sporadic-E, J. Atmos. Terr. Phys., 38, 615–618. Davis, T. N., and M. Sugiura (1966), Auroral electrojet activity index AE and its universal time variations, J. Geophys. Res., 71, 785–801, doi:10.1029/JZ071i003p00785. Fejer, B. G., L. Scherliess, and E. R. de Paula (1999), Effects of the vertical plasma drift velocity on the generation and evolution of equatorial spread F, J. Geophys. Res., 104, 19,859–19,869, doi:10.1029/1999JA900271. Hines, C. O. (1959), An interpretation of certain ionospheric motions in terms of atmospheric gravity waves, J. Geophys. Res., 64, 2210–2211, doi:10.1029/JZ064i012p02210. Hines, C. O. (1960), Internal atmospheric gravity waves at ionospheric heights, Can. J. Phys., 38, 1441–1481, doi:10.1139/p60-150. Huang, C.-M. (1970), F-region irregularities that cause scintillations and spread-F echoes at low latitude, J. Geophys. Res., 75, 4833–4841. Hunsucker, R. D., and J. K. Hargreaves (2003), The High-Latitude Ionosphere and Its Effects on Radio Propagation, 1st ed., Cambridge Univ. Press, Cambridge, U. K. Hysell, D. L., and J. Burcham (2002), Long term studies of equatorial spread F using the JULIA radar at Jicamarca, J. Atmos. Sol. Terr. Phys., 64, 1531–1543. Iyer, K. N., M. N. Jivani, B. M. Pathan, S. Shama, H. Chandra, and M. A. Abdu (2003), Equatorial spread-F: Statistical comparison between ionosonde and scintillation observations and longitude dependence, Adv. Space Res., 31, 735–740, doi:10.1016/S0273-1177(03)00047-4. Jin, S. G., O. Luo, and P. Park (2008), GPS observations of the ionospheric F2-layer behavior during the 20th November 2003 geomagnetic storm over South Korea, J. Geod., 82(12), 883–892, doi:10.1007/s00190-008-0217-x. Joshi, L. M., A. K. Patra, T. K. Pant, and S. V. B. Rao (2013), On the nature of low-latitude Es influencing the genesis of equatorial plasma bubble, J. Geophys. Res., 118, 524–532, doi:10.1029/2012JA018122. Kelley, M. C. (1989), The Earth's Ionosphere, pp. 121–143, Academic, San Diego, Calif. Klausner, V., P. R. Fagundes, Y. Sahai, C. M. Wrasse, V. G. Pillat, and F. Becker-Guedes (2009), Observations of GW/TID oscillations in the F2 layer at low latitude during high and low solar activity, geomagnetic quiet and disturbed periods, J. Geophys. Res., 114, A02313, doi:10.1029/ 2008JA013448. Kotake, N., Y. Otsuka, T. Tsugawa, T. Ogawa, and A. Saito (2006), Climatological study of GPS total electron content variations caused by medium-scale traveling ionospheric disturbances, J. Geophys. Res., 111, A04306, doi:10.1029/2005JA011418. de La Beaujardière, O., et al. (2009), C/NOFS observations of deep plasma depletions at dawn, Geophys. Res. Lett., 36, L00C06, doi:10.1029/ 2009GL038884. Lee, C. C., F. D. Chu, W. S. Chen, J. Y. Liu, S.-Y. Su, Y. A. Liou, and S. B. Yu (2009), Spread F, GPS phase fluctuations, and plasma bubbles near the crest of equatorial ionization anomaly during solar maximum, J. Geophys. Res., 114, A08302, doi:10.1029/2009JA014195. Leitinger, R., and M. Rieger (2005), The TID model for modulation of large scale electron density model, Ann. Geophys., 48(3), 515–523. Li, G., B. Ning, Z. Ren, and L. Hu (2010), Statistics of GPS ionospheric scintillation and irregularities over polar regions at solar minimum, GPS Solutions, 14, doi:10.1007/s10291-009-0156-x. Li, G., B. Ning, M. A. Abdu, X. Yue, L. Liu, W. Wan, and L. Hu (2011), On the occurrence of postmidnight equatorial F region irregularities during the June solstice, J. Geophys. Res., 116, A04318, doi:10.1029/ 2010JA016056. Makela, J. J., E. S. Miller, and E. R. Talaat (2010), Nighttime medium-scale traveling ionospheric disturbances at low geomagnetic latitudes, Geophys. Res. Lett., 37, L24104, doi:10.1029/2010GL045922. Mannucci, A. J., B. D. Wilson, and C. D. Edwards (1993), A new method for monitoring the Earth ionosphere total electron content using the GPS global network, paper presented at ION GPS-93, Inst. of Navig., Salt Lake City, Utah. Mayaud, P. N. (1980), Derivation, Meaning, and Use of Geomagnetic Indices, Geophys. Monogr. Ser., vol. 22, 154 pp., AGU, Washington, D. C. Muella, M. T. A. H., E. A. Kherani, E. R. de Paula, A. P. Cerruti, P. M. Kintner, I. J. Kantor, C. N. Mitchell, I. S. Batista, and M. A. Abdu (2010), Scintillation-producing Fresnel-scale irregularities associated with the regions of steepest TEC gradients adjacent to the equatorial ionization anomaly, J. Geophys. Res., 115, A03301, doi:10.1029/2009JA014788. Pezzopane, M. (2004), Interpre: A Windows software for semiautomatic scaling of ionospheric parameters from ionograms, Comput. Geosci., 30, 125–130, doi:10.1016/j.cageo.2003.09.009. Pezzopane, M., P. R. Fagundes, L. Ciraolo, E. Correia, M. A. Cabrera, and R. G. Ezquer (2011), Unusual nighttime impulsive foF2 enhancement below the southern anomaly crest under geomagnetically quiet conditions, J. Geophys. Res., 116, A12314, doi:10.1029/2011JA016593. Piggott, W. R., and K. Rawer (1972), URSI Handbook of Ionogram Interpretation and Reduction, Rep. UAG-23A, World Data Cent. for Sol. Terr. Phys., NOAA, Boulder, Colo. Rino, C. L. (1979), A power law phase screen model for ionospheric scintillation: 1. Weak scatter, Radio Sci., 14, 1135–1145, doi:10.1029/ RS014i006p01135. Rodrigues, F. S., E. R. de Paula, M. A. Abdu, A. C. Jardim, K. N. Iyer, P. M. Kintner, and D. L. Hysell (2004), Equatorial spread F irregularity characteristics over Sao Luìs, Brazil, using VHF radar and GPS scintillation techniques, Radio Sci., 39, RS1S31, doi:10.1029/2002RS002826. Romano, V., S. Pau, M. Pezzopane, E. Zuccheretti, B. Zolesi, G. De Franceschi, and S. Locatelli (2008), The electronic Space Weather upper atmosphere (eSWua) project at INGV: Advancements and state of the art, Ann. Geophys., 26, 345–351, doi:10.5194/angeo-26-345-2008. Sales, G. S., B.W. Reinisch, J. L. Scali, C. Dozois, T.W. Bullett, E. J.Weber, and P. Ning (1996), Spread F and the structure of equatorial ionization depletions in the southern anomaly region, J. Geophys. Res., 101, 26,819–26,827, doi:10.1029/96JA01946. Seif A., M. Abdullah, A. M. Hasbi, and Y. Zou (2012), Investigation of ionospheric scintillation at UKM station, Malaysia during low solar activity, Acta Astronaut., 81, 92–101, doi:10.1016/j.actaastro.2012.06.024. Shi, J. K., G. J. Wang, B. W. Reinisch, S. P. Shang, X. Wang, G. Zherebotsov, and A. Potekhin (2011), Relationship between strong range spread F and ionospheric scintillations observed in Hainan from 2003 to 2007, J. Geophys. Res., 116, A08306, doi:10.1029/2011JA016806. Spogli, L., L. Alfonsi, G. De Franceschi, V. Romano, M. H. O. Aquino, and A. Dodson (2009), Climatology of GPS ionospheric scintillations over high and mid-latitude European regions, Ann. Geophys., 27, 3429–3437, doi:10.5194/angeo-27-3429-2009. Taylor, J. R. (1997), An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurement, Univ. Sci, Sausalito, Calif., 2nd edition. Titheridge, J. E. (1988), The real height analysis of ionograms: A generalized formulation, Radio Sci., 23, 831–849, doi:10.1029/RS023i005p00831. Tsunoda, R. T. (1985), Control of the seasonal and latitudinal occurrence of equatorial scintillation by the longitudinal gradient of integrated E region Pedersen conductivity, J. Geophys. Res., 90, 447–456, doi:10.1029/ JA090iA01p00447. Tsunoda, R. T. (2008), Satellite traces: An ionogram signature for large scale wave structure and a precursor for equatorial spread F, Geophys. Res. Lett., 35, L20110, doi:10.1029/2008GL035706. Tsunoda, R. T., M. Yamamoto, T. Tsugawa, T. L. Hoang, S. Tulasi Ram, S. V. Thampi, H. D. Chau, and T. Nagatsuma (2011), On seeding, largescale wave structure, equatorial spread F, and scintillations over Vietnam, Geophys. Res. Lett., 38, L20102, doi:10.1029/2011GL049173. Van Dierendonck, A. J., J. Klobuchar, and Q. Hua (1993), Ionospheric scintillation monitoring using commercial single frequency C/A code receivers, paper presented at the Sixth International Technical Meeting (ION GPS-93), Satell. Div., Inst. of Navig., Salt Lake City, Utah, 22–24 Sept. Wheelon, A. D. (2003), Electromagnetic Scintillation: II. Weak Scattering, Cambridge Univ. Press, Cambridge, U. K. Yeh, K. C., and C. H. Liu (1982), Radio wave scintillations in the ionosphere, Proc. Inst. Electr. Eng., 70, 324–360. Zou, Y. (2011), Ionospheric scintillations at Guilin detected by GPS groundbased and radio occultation observations, Adv. Space Res., 47, 945–965, doi:10.1016/j.asr.2010.11.016. Zuccheretti, E., G. Tutone, U. Sciacca, C. Bianchi, and B. J. Arokiasamy (2003), The new AIS-INGV digital ionosonde, Ann. Geophys., 46(4), 647–659.en
dc.description.obiettivoSpecifico1.7. Osservazioni di alta e media atmosferaen
dc.description.obiettivoSpecifico3.9. Fisica della magnetosfera, ionosfera e meteorologia spazialeen
dc.description.journalTypeJCR Journalen
dc.description.fulltextrestricteden
dc.relation.issn0148-0227en
dc.contributor.authorAlfonsi, Lu.en
dc.contributor.authorSpogli, L.en
dc.contributor.authorPezzopane, M.en
dc.contributor.authorRomano, V.en
dc.contributor.authorZuccheretti, E.en
dc.contributor.authorDe Franceschi, G.en
dc.contributor.authorCabrera, M. A.en
dc.contributor.authorEzquer, R. G.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentLaboratorio de Telecomunicaciones, DEEC, FACET, Universidad Nacional de Tucumán, Tucumán, Argentinaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptLaboratorio de Telecomunicaciones, DEEC, FACET, Universidad Nacional de Tucumán, Tucumán, Argentina-
crisitem.author.orcid0000-0002-1806-9327-
crisitem.author.orcid0000-0003-2310-0306-
crisitem.author.orcid0000-0001-5800-2322-
crisitem.author.orcid0000-0002-7532-4507-
crisitem.author.orcid0000-0003-1732-4557-
crisitem.author.orcid0000-0002-3943-6798-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent01. Atmosphere-
crisitem.classification.parent01. Atmosphere-
crisitem.classification.parent01. Atmosphere-
crisitem.classification.parent05. General-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
jgra50378.pdf4.18 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 50

57
checked on Feb 7, 2021

Page view(s) 5

792
checked on Apr 24, 2024

Download(s) 50

85
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric