Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/7197
DC FieldValueLanguage
dc.contributor.authorallVentura, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallVilardo, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallTerranova, C.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallBellucci Sessa, E.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.date.accessioned2011-11-18T11:49:42Zen
dc.date.available2011-11-18T11:49:42Zen
dc.date.issued2011-12en
dc.identifier.urihttp://hdl.handle.net/2122/7197en
dc.description.abstractA multi-temporal LiDAR study of an active landslide at Montaguto (Italy) is presented. Four LiDAR-derived Digital Terrain Models acquired on May 2006, July 2009, April 2010 and June 2010 are used. The interpretation of selected morphometric parameters (surface roughness, residual topographic surface) and the statistical analysis of the temporal variations of such parameters allowed the reconstruction and tracking of the landslide. The landslide boundary monitoring was achieved and zones of uplift and subsidence, volumes of removed and/or accumulated material, and average rates of vertical and horizontal displacement (retreat rate of the crown and advancement rate of the toe) were estimated. Deformation structures (scarps, cracks, folds) affecting the landslide in different times were also mapped; some of such structures represent precursors of impending instability processes or give information on the mechanism of emplacement. Various types of activity (e.g. rock-fall, flow) and geometry (e.g., channelized flow) are recognized and zones whose topographic features change with time due to artificial drainage and earth handling/removal work were detected. The LiDAR-derived information allows us to decipher the kinematics of the landslide. The results provide new insight on the use of airborne LiDAR in the monitoring strategies of gravity-controlled processes.en
dc.language.isoEnglishen
dc.publisher.nameElsevieren
dc.relation.ispartofRemote Sensing of Environmenten
dc.relation.ispartofseries12 / 115 (2011)en
dc.subjectLiDARen
dc.subjectLandslideen
dc.subjectMonitoringen
dc.subjectMorphometryen
dc.subjectTopographic changesen
dc.subjectSpatio-temporal analysisen
dc.titleTracking and evolution of complex active landslides by multi-temporal airborne LiDAR data: The Montaguto landslide (Southern Italy)en
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber3237–3248en
dc.identifier.URLhttp://www.journals.elsevier.com/remote-sensing-of-environment/en
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.03. Geomorphologyen
dc.subject.INGV05. General::05.08. Risk::05.08.01. Environmental risken
dc.identifier.doi10.1016/j.rse.2011.07.007en
dc.relation.referencesAxelsson, P. (1999). Processing of laser scanner data — Algorithms and applications.ISPRS Journal of Photogrammetry & Remote Sensing, 54(2–3), 138–147. Baldo, M., Bicocchi, C., Chiocchini, U., Giordan, D., & Lollino, G. (2009). LiDAR monitoring of mass wasting processes: The Radicofani landslide, Province of Siena, Central Italy. Geomorphology, 105, 193–201. doi:10.1016/j.geomorph.2008.09.015. Baltsavias, E. P. (1999). Airborne laser scanning: Basic relations and formulas. ISPRS Journal of Photogrammetry & Remote Sensing, 54(2–3), 199–214. Bull, J. M., Miller, H., Gravley, D. M., Costello, D., Hikuroa, D. C. H., & Dix, J. K. (2010). Assessing debris flows using LIDAR differencing: 18 May 2005 Matata event, New Zealand. Geomorphology, 124, 75–84. Burns, W. J., Coe, J. A., Kaya, B. S., & MA, L. (2010). Analysis of elevation changes detected from multi-temporal LiDAR surveys in forested landslide terrain in western Oregon. Environmental Engineering Geoscience, 16, 315–341. Cavalli, M., Tarolli, P., Marchi, L., & Fontana, G. D. (2008). The effectiveness of airborne LiDAR data in the recognition of channel-bed morphology. Catena, 73, 249–260. doi:10.1016/j.catena.2007.11.001. Chen, R. F., Chang, K. J., Angelier, J., Chan, Y. C., Deffontaines, B., Lee, C. T., et al. (2006). Topographical changes revealed by high-resolution airborne LiDAR data: The 1999 Tsaoling landslide induced by the Chi-Chi earthquake. Engineering Geology, 88(3–4), 160–172. Commissariato di Governo della Regione Campania (2006). Indagini geognostiche per la caratterizzazione del movimento franoso in atto nel territorio del comune di Montaguto–provincia di Avellino. Report 2006 42 pp. Corsini, A., Borgatti, L., Cervi, F., Dahne, A., Ronchetti, F., & Sterzai, P. (2009). Estimating mass-wasting processes in active earth slides–earth flows with time-series of High- Resolution DEMs from photogrammetry and airborne LiDAR. Natural Hazards Earth System Science, 9, 433–439. doi:10.5194/nhess-9-433-2009. Crane, M., Clayton, T., Raabe, E., Stoker, J., Handley, L., Bawden, G., et al. (2004). Report of the U.S. Geological Survey LiDAR Workshop Sponsored by the Land Remote Sensing Program and held in St. Petersburg, FL, November 2002 - U.S. Department of the Interior - U.S. Geological Survey Open File Report 1456 pp. Dewitte, O., Jasselette, J. -C., Cornet, Y., Van Den Eeckhaut, M., Collignon, A., Poesen, J., et al. (2008). Tracking landslide displacements by multi-temporal DTMs: A combined aerial stereophotogrammetric and LiDAR approach in western Belgium. Engineering Geology, 99, 11–22. doi:10.1016/j.enggeo.2008.02.006. Doglioni, C. (1991). A proposal of kinematic modelling for W‐dipping subductions— Possible applications to the Tyrrhenian‐Apennines system. Terra Nova, 3, 423–434. doi:10.1111/j.1365-3121.1991.tb00172.x. Evans, S. G., & De Graff, J. (2005). Catastrophic landslides: Effects, occurrence, and mechanisms. Reviews in Engineering Geology, 15, : Geological Society ofAmerica 412pp. Frankel, K. L., & Dolan, J. F. (2007). Characterizing arid region alluvial fan surface roughness with airborne laser swath mapping digital topographic data. Journal of Geophysical Research—Earth Surface, 112, F02025. doi:10.1029/2006JF000644. Glade, M. G. Anderson, & Crozier, M. J. (2005). Landslide hazard and risk. Chichester (UK): Wiley 770 pp. Glenn, N. F., Streutker, D. R., Chadwick, D. J., Thackray, G. D., & Dorsch, S. J. (2006). Geomorphology, 73, 131–148. doi:10.1016/j.geomorph.2005.07.006. Grebby, S., Cunningham, D., Naden, J., & Tansey, K. (2010). Lithological mapping of the Troodos ophiolite, Cyprus, using airborne LiDAR topographic data. Remote Sensing of Environment, 114, 713–724. doi:10.1016/j.rse.2009.11.006. Grohmann, C. H., Riccomini, C., & Alves, F. M. (2007). SRTM-based morphotectonic analysis of the Poc-os de Caldas Alkaline Massif, southeastern Brazil. Computers & Geosciences, 33, 10–19. doi:10.1016/j.cageo.2006.05.002. Grohmann, C. H., Smith, M. J., & Riccomini, C. (2010). Multiscale analysis of topographic surface roughness in the Midland Valley, Scotland. IEEE Transactions on Geoscience and Remote Sensing, 99, 1–14. doi:10.1109/TGRS.2010.2053546. Haneberg, W. C., Cole, W. F., & Kasali, G. (2009). High-resolution lidar-based landslide hazard mapping and modeling, UCSF Parnassus Campus; San Francisco, USA. Bulletin Engineering Geology of Environment, 68, 263–276. doi:10.1007/s10064-009-0204-3. Herrera, G., Davalillo, J. C., Mulas, J., Cooksley, G., Monserrat, O., & Pancioli, V. (2009). Mapping and monitoring geomorphological processes in mountainous areas using PSI data: Central Pyrenees case study. Nat. Hazards Earth Syst. Sci., 9, 1587–1598. Hilley, G. E., Burgmann, R., Ferretti, A., Novali, F., & Rocca, F. (2004). Dynamics of slow moving landslides from Permanent Scatterer analysis. Science, 304(5679), 1952–1955. Hobson, R. D. (1972). Surface roughness in topography: Quantitative approach. In R. J. Chorley (Ed.), Spatial Analysis inGeomorphology (pp. 225–245). London,U.K.:Methuer. Jaboyedoff, M., Oppikofer, T., Abellán, A., Derron, M. H., Loye, A., Metzger, R., et al. (2010). Use of LIDAR in landslide investigations: A review. Natural Hazards. doi:10.1007/s11069-010-9634-2. Jenness, J. (2004). Calculating landscape surface area from digital elevation model. Wildlife Society Bull, 32(3), 829–839. Jenness, J. (2010). DEM Surface Tools v. 2.1.254. Jenness Enterprises. Available at: http://www.jennessent.com/arcgis/surface_area.htm Joyce, K. E., Samsonov, S., Manville, V., Jongens, R., Graettinger, A., & Cronin, S. J. (2009). Remote sensing data types and techniques for lahar path detection: A case study at Mt Ruapehu, New Zealand. Remote Sensing of Environment, 113, 1778–1786. Kasai, M., Ikeda, M., Asahina, T., & Fujisawa, K. (2009). LiDAR-derived DEM evaluation of deep-seated landslides in a steep and rocky region of Japan. Geomorphology, 113, 57–69. doi:10.1016/j.geomorph.2009.06.004. Kelsey, H. M. (1978). Earthflows in Franciscan mélange, Van Duzen River basin, California. Geology, 6, 361–364. Li, Z., Zhu, Q., & Gold, C. (2005). Digital terrain modeling — Principles and methodology. Boca Raton, Florida: CRC Press pp 319. Lissak, C. B., Maquaire, O., Malet, J. P., Gomez, C., & Lavigne, F. (2010). A multi-technique approach for characterizing the geomorphological evolution of a Villerville- Cricqueboeuf coastal landslide (Normandy, France). Geophysical Research Abstracts, 12, 7866, EGU General Assembly 2010. Mackey, B. H., & Roering, J. J. (2011). Sediment yield, spatial characteristics, and the long-term evolution of active earthflows determined from airborne LiDAR and historical aerial photographs, Eel River, California. Geological Society of America Bulletin. doi:10.1130/B30306.1.1. Malinverno, A., & Ryan, W. B. F. (1986). Extension in the Tyrrhenian Sea and shortening in the Apennines as result of arc migration driven by sinking of the lithosphere. Tectonics, 5, 227–245. doi:10.1029/TC005i002p00227. McKean, J., Bird, E., Pettinga, J., Campbell, J., & Roering, j (2004). Using LiDAR to objectively map bedrock landslides and infer their mechanics and material properties. Geological Society of America Abstracts with Programs, 36(5), 332. McKean, J., & Roering, J. (2004). Objective landslide detection and surface morphology mapping using high-resolution airborne laser altimetry. Geomorphology, 57, 331–351. doi:10.1016/S0169-555X(03)00164-8. Metternicht, G., Hurni, L., & Gogu, R. (2005). Remote sensing of landslides: An analysis of the potential contribution to geo-spatial systems for hazard assessment in mountainous environments. Remote Sensing of Environment, 98, 284–303. Miliaresis, G., & Paraschou, Ch. (2005). Vertical accuracy of the SRTM DTED Level 1 of Crete. International Journal of Applied Earth Observation & GeoInformation, 7, 49–59. Miliaresis, G., Sabatakakis, N., & Koukis, G. (2005). Terrain pattern recognition and spatial decision making for regional slope stability studies. Natural Resources Research, 14, 91–100. Varnes, D. J. (1978). Slope movement types and processes. In R. L. Schuster, & R. J. Krizek (Eds.), Landslides, analysis and control. Transportation Research Board Sp. Rep. No. 176, National Academy of Sciences (pp. 11–33).. Ventura, G., & Vilardo, G. (2008). Emplacement mechanism of gravity flows inferred from high resolution Lidar data: the 1944 Somma-Vesuvius lava flow (Italy). Geomorphology. doi:10.1016/j.geomorph.2007.06.005. Vezzani, L., Festa, A., & Ghisetti, F. C. (2010). Geology and tectonic evolution of the Central-Southern Apennines, Italy. Special Paper, 469, : The Geological Society of America 58 pp. Vilardo, G., Ventura, G., Terranova, C., Matano, F., & Nardò, S. (2009). Ground deformation due to tectonic, hydrothermal, gravity, hydrogeological, and anthropic processes in the Campania Region (Southern Italy) from Permanent Scatterers Synthetic Aperture Radar Interferometry. Remote Sensing of Environment, 113, 197–212. doi:10.1016/j.rse.2008.09.007.en
dc.description.obiettivoSpecifico5.5. TTC - Sistema Informativo Territorialeen
dc.description.journalTypeJCR Journalen
dc.description.fulltextrestricteden
dc.contributor.authorVentura, G.en
dc.contributor.authorVilardo, G.en
dc.contributor.authorTerranova, C.en
dc.contributor.authorBellucci Sessa, E.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.orcid0000-0001-9388-9985-
crisitem.author.orcid0000-0001-7240-4467-
crisitem.author.orcid0000-0003-2521-6476-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent05. General-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
2011_Ventura et Al - Montaguto Landslide.pdfMain Article4.85 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 50

63
checked on Feb 10, 2021

Page view(s) 50

557
checked on Apr 24, 2024

Download(s)

43
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric