Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/6409
DC FieldValueLanguage
dc.contributor.authorallTuccimei, P.; Università Roma Treen
dc.contributor.authorallMollo, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallVinciguerra, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallCastelluccio, M.; Università Roma Treen
dc.contributor.authorallSoligo, M.; Università Roma Treen
dc.date.accessioned2010-12-16T11:58:21Zen
dc.date.available2010-12-16T11:58:21Zen
dc.date.issued2010-03-12en
dc.identifier.urihttp://hdl.handle.net/2122/6409en
dc.descriptionAn edited version of this paper was published by AGU. Copyright (2010) American Geophysical Union.en
dc.description.abstractRadon and thoron emissions from lithophysae‐rich tuff under increasing deformation are measured to determine how mechanical damage affects gas emission levels in tuffs. Mechanical properties of rocks under stresses should be carefully considered to properly interpret data from geochemical field monitoring. Two samples are uniaxially loaded up to failure, while two others are unloaded at the end of the elastic phase, in order to achieve the highest compaction of existing pores. Changes in the porosity of deformed samples are evidenced by helium pycnometer and microscopy analyses. Radon and thoron exhalation rates are measured on groups of two samples by alpha spectrometer technique. Results show that tuff samples are characterised by a dual porosity consisting of a macroporosity, given by isolated large pores with sizes from mm‐ up to cm‐scale and a microporosity ranging between microns to hundreds of microns. At the end of the elastic phase pervasive pore collapse is observed, due to the closure of the cm‐scale macropores. This is mirrored by a significant decrease of radon and thoron release. After failure, a further reduction of porosity in the rock adjacent to the fault planes is observed due to extensive closure of both macropores and micropores. At this stage radon and thoron emissions increase. The formation of new exhaling surfaces is the main carrier of the bulk increase of radon and thoron exhalations, strongly prevailing over the densification carried out from the compaction mechanisms. In terms of volcanic hazard, negative anomalies in radon emissions should be considered as indicators of forthcoming ruptures. Key words: radon and thoron exhalation, tuff deformation, seismic precursor.en
dc.language.isoEnglishen
dc.publisher.nameAmerican Geophysical Unionen
dc.relation.ispartofGeophysical Research Lettersen
dc.relation.ispartofseries/37 (2010)en
dc.subjectRadonen
dc.subjectRock deformationen
dc.titleRadon and thoron emission from lithophysae-rich tuff under increasing deformation: An experimental studyen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumberL05305en
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.07. Rock geochemistryen
dc.identifier.doi10.1029/2009GL042134en
dc.relation.referencesAl‐Harthi, A. A., R. M. Al‐Amri, and W. M. Shehata (1999), The porosity and engineering properties of vesicular basalt in Saudi Arabia, Eng. Geol. Amsterdam, 54, 313‐320, doi:10.1016/S0013-7952(99)00050-2. Avar, B. B., and N. W. Hudyma (2007), Observations on the influence of lithophysae on elastic (Young”s) modulus and uniaxial compressive strength of Topopah Spring Tuff at Yucca Mountain, Nevada, USA, Int . J. Rock Mech. Min. Sci . , 44, 266–270, doi:10.1016/ j . ijrmms.2006.06.003. Baud, P., A. Schubnel, and T.‐f. Wong (2000), Dilatancy, compaction and failure mode in Solnhofen limestone, J. Geophys. Res., 105, 19,289– 19,303, doi:10.1029/2000JB900133. Birchard, G. F., and W. F. Libby (1980), Soil radon concentration changes preceding and four magnitude 4.2–4.7 earthquakes on the San Jacinto fault in southern California, J. Geophys. Res., 85, 3100–3106, doi:10.1029/JB085iB06p03100. Bolt, B. A. (1993), Earthquakes and Geological Discovery, Sci. Am. Lib., New York. Fuenkajorn, K., and J. J. K. Daemen (1992), An empirical strength criterion for heterogeneous tuff, Eng. Geol., 32, 209–223, doi:10.1016/0013-7952 (92)90049-5. Gervino, G., C. Cigolini, A. Lavagno, C. Marino, P. Prati, L. Pruiti, and G. Zangari (2004), Modelling temperature distributions and radon emission at Stromboli Volcano using a non‐extensive statistical approach, Phys. A, 340, 402–409. Gokceoglu, C. (2002), A fuzzy triangular chart to predict the uniaxial compressive strength of the Ankara Agglomerates from their petrographic composition, Eng. Geol. Amsterdam, 66, 39–51, doi:10.1016/S0013- 7952(02)00023-6. Holub, R. F., and B. T. Brady (1981), The effect of stress on radon emanation from rock, J. Geophys. Res., 86, 1776–1784, doi:10.1029/ JB086iB03p01776. Hudyma, N., B. Burcin Avarb, and M. Karakouzian (2004), Compressive strength and failure modes of lithophysae‐rich Topopah Spring Tuff specimens and analog models containing cavities, Eng. Geol. Amsterdam, 73, 179‐190, doi:10.1016/j.enggeo.2004.01.003. Neri, M., B. Behncke, M. Burton, G. Galli, S. Giammanco, E. Pecora, E. Privitera, and D. Reitano (2006), Continuous soil radon monitoring during the July 2006 Etna eruption, Geophys. Res. Lett., 33, L24316, doi:10.1029/2006GL028394. Nishimura, S., and I. Katsura (1990), Radon in soil gas: Applications in exploration and earthquake prediction, in Geochemistry of Gaseous Elements and Compounds, edited by E. M. Durrance et al., pp. 497– 533, Theophrastus, Athens. Planini, J., V. Radolic, and B. Vukovic (2004), Radon as an earthquake precursor, Nucl. Instrum. Methods Phys. Res., Sect. A, 530, 568–574, doi:10.1016/j.nima.2004.04.209. Ramola, R. C., Y. Prasad, G. Prasad, S. Kumar, and V. M. Choubey (2008), Soil‐gas radon as seismotectonic indicator in Garhwal Himalaya, Appl. Radiat. Isot., 66, 1523–1530, doi:10.1016/j.apradiso.2008.04.006. Roeloffs, E. (1999), Radon and rock deformation, Nature, 399, 104–105, doi:10.1038/20072. Silver, P. G., and H. Wakita (1996), A search for earthquake precursors, Science, 273, 77–78, doi:10.1126/science.273.5271.77. Sonmez, H., E. Tuncay, and C. Gokceoglu (2004), Models to predict the uniaxial compressive strength and the modulus of elasticity for Ankara Agglomerate, Int. J. Rock Mech. Min. Sci., 41, 717–729, doi:10.1016/ j.ijrmms.2004.01.011. Sonmez, H., C. Gokceoglua, E. W. Medley, E. Tuncay, and H. A. Nefeslioglu (2006), Estimating the uniaxial compressive strength of a volcanic bimrock, Int. J. Rock Mech. Min. Sci., 43, 554–561, doi:10.1016/j. ijrmms.2005.09.014. Talwani, P., W. S. Moore, and J. Chiang (1980), Radon anomalies and microearthquakes at Lake Jocasse, J. Geophys. Res., 85, 3079–3088, doi:10.1029/JB085iB06p03079.Tillerson, J. R., and F. B. Nimick (1984), Geoengineering properties of potential repository units at Yucca Mountain, southern Nevada, Sandia National Labs Rep., SAND84‐0221, Albuquerque, N. M. Trique, M., P. Richon, F. Perrier, J. P. Avouac, and J. C. Sabroux (1999), Radon emanation and electric potential variations associated with transient deformation near reservoir lakes, Nature , 399, 137–141, doi:10.1038/20161. Tuccimei, P., M. Moroni, and D. Norcia (2006), Simultaneous determination of 222Rn and 220Rn exhalation rates from building materials used in Central Italy with accumulation chambers and a continuous solid state alpha detector: influence of particle size, humidity and precursors concentration, Appl. Radiat. Isot., 64, 254–263, doi:10.1016/j. apradiso.2005.07.016. Tuccimei, P., S. Vinciguerra, S. Moretti, S. Mollo, and M. Castelluccio (2009), Relating changes in radon exhalation to increasing loading in rocks: New insights from rock deformation laboratory experiments, paper presented at European Geosciences Union General Assembly, Vienna, 19–24 April. Vajdova, V., P. Baud, and T.‐f. Wong (2004), Compaction, dilatancy and failure in porous carbonate rocks, J. Geophys. Res., 109, B10406, doi:10.1029/2003JB002942. Vinciguerra, S., C. Trovato, P. G. Meredith, P. M. Benson, C. Troise, and G. De Natale (2006), Understanding the seismic velocity structure of Campi Flegrei Caldera (Italy): From the laboratory to the field scale, Pure Appl. Geophys., 163, 2205–2221, doi:10.1007/s00024-006-0118-y. Vinciguerra, S., P. Del Gaudio, M. T. Mariucci, F. Marra, P. G. Meredith, P. Montone, S. Pierdominici, and P. Scarlato (2009), Physical properties of tuffs from a scientific borehole at Alban hills volcanic district (central Italy), Tectonophysics, 471, 161–169, doi:10.1016/j.tecto.2008.08.010.en
dc.description.obiettivoSpecifico2.3. TTC - Laboratori di chimica e fisica delle rocceen
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorTuccimei, P.en
dc.contributor.authorMollo, S.en
dc.contributor.authorVinciguerra, S.en
dc.contributor.authorCastelluccio, M.en
dc.contributor.authorSoligo, M.en
dc.contributor.departmentUniversità Roma Treen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentUniversità Roma Treen
dc.contributor.departmentUniversità Roma Treen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptUniversità “Roma Tre"-
crisitem.author.deptUniversità di Roma "La Sapienza"-
crisitem.author.deptUniversità Roma Tre-
crisitem.author.deptUniversità “Roma Tre"-
crisitem.author.orcid0000-0002-6939-3549-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
8_Tuccimei et al._2010_Geophysical Research Letters_37_L05305.pdfMain article226.83 kBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 20

38
checked on Feb 10, 2021

Page view(s)

162
checked on Apr 24, 2024

Download(s)

23
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric