Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/6320
DC FieldValueLanguage
dc.contributor.authorallDellino, P.en
dc.contributor.authorallDioguardi, F.en
dc.contributor.authorallZimanowski, B.en
dc.contributor.authorallButtner, R.en
dc.contributor.authorallMele, D.en
dc.contributor.authorallLa Volpe, L.en
dc.contributor.authorallSulpizio, R.en
dc.contributor.authorallDoronzo, D.M.en
dc.contributor.authorallSonder, I.en
dc.contributor.authorallBonasia, R.en
dc.contributor.authorallCalvari, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italiaen
dc.contributor.authorallMarotta, E.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.date.accessioned2010-12-13T13:02:06Zen
dc.date.available2010-12-13T13:02:06Zen
dc.date.issued2010en
dc.identifier.urihttp://hdl.handle.net/2122/6320en
dc.description.abstractIt is currently impractical to measure what happens in a volcano during an explosive eruption, and up to now much of our knowledge depends on theoretical models. Here we show, by means of large‐scale experiments, that the regime of explosive events can be constrained on the basis of the characteristics of magma at the point of fragmentation and conduit geometry. Our model, whose results are consistent with the literature, is a simple tool for defining the conditions at conduit exit that control the most hazardous volcanic regimes. Besides the well‐known convective plume regime, which generates pyroclastic fallout, and the vertically collapsing column regime, which leads to pyroclastic flows, we introduce an additional regime of radially expanding columns, which form when the eruptive gas‐particle mixture exits from the vent at overpressure with respect to atmosphere. As a consequence of the radial expansion, a dilute collapse occurs, which favors the formation of density currents resembling natural base surges. We conclude that a quantitative knowledge of magma fragmentation, i.e., particle size, fragmentation energy, and fragmentation speed, is critical for determining the eruption regime.en
dc.description.sponsorshipResearch was partially funded by DPC-INGV agreement 07‐09 and MUR PRIN 06.en
dc.language.isoEnglishen
dc.publisher.nameAmerican Geophysical Unionen
dc.relation.ispartofJournal of Geophysical Research, Solid Earthen
dc.relation.ispartofseries/115 (2010)en
dc.subjectexplosive volcanic regimesen
dc.subjectStrombolien
dc.titleConduit flow experiments help constraining the regime of explosive eruptionsen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumberB04204en
dc.identifier.URLhttp://hdl.handle.net/2122/5336en
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.02. Experimental volcanismen
dc.identifier.doi10.1029/2009JB006781en
dc.relation.referencesBuresti, G., and C. Casarosa (1989), One‐dimensional adiabatic flow of equilibrium gas‐particle mixtures in long vertical ducts with friction, J. Fluid Mech., 203, 251–272, doi:10.1017/S002211208900145X. Burgisser, A., G. W. Bergantz, and R. E. Breidenthal (2005), Addressing complexity in laboratory experiments: The scaling of dilute multiphase flows in magmatic systems, J. Volcanol. Geotherm. Res., 141, 245– 265, doi:10.1016/j.jvolgeores.2004.11.001. Bursik, M. I., and A. W. Woods (1991), Buoyant, superbouyant and collapsing eruption columns, J. Volcanol. Geotherm. Res., 45, 347–350, doi:10.1016/0377-0273(91)90069-C. Büttner, R., P. Dellino, H. Raue, I. Sonder, and B. Zimanowski (2006), Stress‐induced brittle fragmentation of magmatic melts: Theory and experiments, J. Geophys. Res., 111, B08204, doi:10.1029/2005JB003958. Carey, S. N., and H. Sigurdsson (1989), The intensity of Plinian eruptions, Bull. Volcanol., 51, 28–40, doi:10.1007/BF01086759. Christiansen, R. L., and D. W. Peterson (1981), Chronology of the 1980 eruptive activity, U.S. Geol. Surv. Prof. Pap., 1250, 17–30. Crowe, C. T. (2006), Multiphase Flow Handbook, Taylor and Francis, Boca Raton, Fla. Dellino, P., D. Mele, R. Bonasia, G. Braia, L. La Volpe, and R. Sulpizio (2005), The analysis of the influence of pumice shape on its terminal velocity, Geophys. Res. Lett., 32, L21306, doi:10.1029/2005GL023954. Dellino, P., B. Zimanowski, R. Büttner, L. La Volpe, D. Mele, and R. Sulpizio (2007), Large‐scale experiments on the mechanics of pyroclastic flows: Design, engineering, and first results, J. Geophys. Res., 112, B04202, doi:10.1029/2006JB004313. Dingwell, D. B. (1996), Volcanic dilemma: Flow or blow?, Science, 273, 1054–1055, doi:10.1126/science.273.5278.1054. Dobran, F., A. Neri, and G. Macedonio (1993), Numerical simulation of collapsing volcanic columns, J. Geophys. Res., 98, 4231–4259, doi:10.1029/92JB02409. Garic, R. V., Z. B. Grbavcic, and S. D. Jovanovic (1995), Hydrodynamic modeling of vertical non‐accelerating gas‐solids flow, Powder Technol., 84, 65–74, doi:10.1016/0032-5910(95)02976-9.Ishii, M., and N. Zuber (1979), Drag coefficient and relative velocity in bubbly, droplet or particulate flows, AIChE J., 25, 843–855, doi:10.1002/aic.690250513. Koyaguchi, T., and N. K. Mitani (2005), A theoretical model for fragmentation of viscous bubbly magmas in shock tubes, J. Geophys. Res., 110, B10202, doi:10.1029/2004JB003513. Kueppers, U., B. Scheu, O. Spieler, and D. B. Dingwell (2006), Fragmentation efficiency of explosive volcanic eruptions: A study of experimentally generated pyroclasts, J. Volcanol. Geotherm. Res., 153, 125–135, doi:10.1016/j.jvolgeores.2005.08.006. Kulick, J. D., J. R. Fessler, and J. K. Eaton (1994), Particle response and turbulence modification in fully developed channel flow, J. Fluid Mech., 277, 109–134, doi:10.1017/S0022112094002703. Mader, H. M., E. E. Brodski, D. Howard, and B. Sturtevant (1997), Laboratory simulations of sustained volcanic eruptions, Nature, 388, 462–464, doi:10.1038/41306. Ogden, D. E., G. A. Glatzmaier, and K. H. Wohletz (2008a), Effects of vent overpressure on buoyant eruption columns: Implications for plume stability, Earth Planet. Sci. Lett., 268, 283–292, doi:10.1016/ j.epsl.2008.01.014. Ogden, D. E., K. H. Wohletz, G. A. Glatzmaier, and E. E. Brodsky (2008b), Numerical simulations of volcanic jets: Importance of vent overpressure, J. Geophys. Res. , 113, B02204, doi :10.1029/ 2007JB005133. Paladio‐Melosantos, M. L. O., R. U. Solidum, W. E. Scott, R. B. Quiambao, J. V. Umbal, K. S. Rodolfo, B. S. Tubianosa, P. J. Delos Reyes, R. A. Alonso, and H. B. Ruelo (1996), Tephra falls of the 1991 eruptions of Mount Pinatubo, in Fire and Mud: Eruptions and Lahars of Mount Pinatubo, Philippines, edited by C. G. Newhall and R. S. Punongbayan, pp. 687–731, Philipp. Inst. of Volcanol. and Seismol., Quezon City. Papale, P. (1999), Strain‐induced magma fragmentation in explosive eruptions, Nature, 397, 425–428, doi:10.1038/17109. Papale, P. (2001), Dynamics of magma flow in volcanic conduits with variable fragmentation efficiency and nonequilibrium pumice degassing, J. Geophys. Res., 106(B6), 11,043–11,065, doi:10.1029/2000JB900428. Sigurdsson, H., S. Carey, W. Cornell, and T. Pescatore (1985), The eruption of Vesuvius in AD 79, Natl. Geogr. Res., 1, 332–387. Spieler, O., D. B. Dingwell, and M. Alidibirov (2004), Magma fragmentation speed: An experimental determination, J. Volcanol. Geotherm. Res., 129, 109–123, doi:10.1016/S0377-0273(03)00235-X. Valentine, G. A., and K. H. Wohletz (1989), Numerical models of Plinian eruption columns and pyroclastic flows, J. Geophys. Res., 94, 1867– 1887, doi:10.1029/JB094iB02p01867. Wilson, L., R. S. J. Sparks, T. C. Huang, and N. D. Watkins (1978), The control of volcanic column heights by eruption energetics and dynamics, J. Geophys. Res., 83, 1829–1836, doi:10.1029/JB083iB04p01829. Wilson, L., R. S. J. Sparks, and G. P. L. Walker (1980), Explosive volcanic eruption–IV. The control of magma properties and conduit geometry on eruption column behaviour, Geophys. J. R. Astron. Soc., 63, 117–148. Wohletz, K. H. (1998), Pyroclastic surges and compressible two‐phase flows, in From Magma to Tephra, edited by A. Freundt and M. Rosi, pp. 247–312, Elsevier, Amsterdam. Woods, A. W. (1988), The fluid dynamics and thermodynamics of eruption columns, Bull. Volcanol., 50, 169–193, doi:10.1007/BF01079681. Woods, A. W. (1995), The dynamics of explosive volcanic eruptions, Rev. Geophys., 33, 495–530, doi:10.1029/95RG02096. Zimanowski, B., K. Wohletz, P. Dellino, and R. Büttner (2003), The volcanic ash problem, J. Volcanol. Geotherm. Res., 122, 1–5, doi:10.1016/S0377-0273(02)00471-7.en
dc.description.obiettivoSpecifico3.6. Fisica del vulcanismoen
dc.description.journalTypeJCR Journalen
dc.description.fulltextrestricteden
dc.contributor.authorDellino, P.en
dc.contributor.authorDioguardi, F.en
dc.contributor.authorZimanowski, B.en
dc.contributor.authorButtner, R.en
dc.contributor.authorMele, D.en
dc.contributor.authorLa Volpe, L.en
dc.contributor.authorSulpizio, R.en
dc.contributor.authorDoronzo, D.M.en
dc.contributor.authorSonder, I.en
dc.contributor.authorBonasia, R.en
dc.contributor.authorCalvari, S.en
dc.contributor.authorMarotta, E.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptUniversita' di Bari, Dipartimento Geomineralogico-
crisitem.author.deptInstitut für Geologie, Universität Würzburg, Germany-
crisitem.author.deptUniversita' di Bari, Dipartimento Geomineralogico-
crisitem.author.deptCIRISIVU, c/o Dipartimento Geomineralogico, Universita' di Bari-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptUniversity of Wurzburg-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.orcid0000-0001-6927-4905-
crisitem.author.orcid0000-0002-6205-6830-
crisitem.author.orcid0000-0002-8935-335X-
crisitem.author.orcid0000-0002-3930-5421-
crisitem.author.orcid0000-0002-6866-8870-
crisitem.author.orcid0000-0001-8189-5499-
crisitem.author.orcid0000-0001-7211-2173-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Dellino et al 2010.pdfmain article1.85 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 20

34
checked on Feb 10, 2021

Page view(s)

307
checked on Apr 24, 2024

Download(s)

25
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric