Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/601
DC FieldValueLanguage
dc.contributor.authorallNisii, V.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallZollo, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallIannaccone, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.date.accessioned2005-12-20T08:53:13Zen
dc.date.available2005-12-20T08:53:13Zen
dc.date.issued2004en
dc.identifier.urihttp://hdl.handle.net/2122/601en
dc.description.abstractWe have developed a technique based on the move-out and stack of reflected seismic phases from local earthquake seismograms. For a given interface depth and a velocity model, the theoretical travel times of reflected/converted phases in a 1D medium are computed and used to align in time the vertical-component microearthquake records collected by a local seismic network. The locations and origin times of events are preliminarily estimated from P and S arrival times. Different seismic gathers are obtained for each considered reflected/converted phase at that interface, and the best interface depth is chosen as the one that maximizes the value of a semblance function computed on moved-out records. This method has been applied to seismic records of microearthquakes that occur at Mt. Vesuvius volcano. The analysis confirms the evidence for an 8 to 10-km-deep seismic discontinuity beneath the volcano, which was previously identified, by migration of active seismic data, as the roof of an extended magmatic sill.en
dc.format.extent469 bytesen
dc.format.extent619799 bytesen
dc.format.mimetypetext/htmlen
dc.format.mimetypeapplication/pdfen
dc.language.isoEnglishen
dc.publisher.nameThe Seismological Society of Americaen
dc.relation.ispartofBulletin of the seismological society of Americaen
dc.relation.ispartofseries94, 5en
dc.subjectMt. Vesuviusen
dc.subjectMidcrustal discontinuityen
dc.titleDepth of a Midcrustal Discontinuity beneath Mt. Vesuvius from the Stacking of Reflected and Converted Waves on Local Earthquake Recordsen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber1842-1849en
dc.identifier.URLhttp://bssa.geoscienceworld.orgen
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismologyen
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysisen
dc.subject.INGV05. General::05.01. Computational geophysics::05.01.01. Data processingen
dc.relation.referencesAuger, E., P. Gasparini., J. Virieux, and A. Zollo (2001). Imaging of a midcrust high to low seismic discontinuity beneath Mt. Vesuvius, Science 204, 1510–1512. Balch, R. S., H. E. Hartse, A. Sanford, and K. Lin (1997). A new map of the geographic extent of the Socorro mid-crustal magma body, Bull. Seism. Soc. Am. 87, 174–182. Belkin, H. E., and B. De Vivo (1993). Fluid inclusion studies of ejected nodules from plinian eruptions of Mt. Vesuvius, J. Volcanol. Geother. Res. 58, 89–100. Bernard, M.-L., and M. Zamora (2000). Mechanical properties of volcanic rocks and their relations to transport properties, EOS 81, Fall Meet. Suppl., Abstract V71A-33. Castellano, M., C. Buonocunto, M. Capello, and M. La Rocca (2002). Seismic surveillance of active volcanoes: the Osservatorio Vesuviano Seismic Network (OVSN—Southern Italy), Seism. Res. Lett. 73, 177–184. Civetta, L., and R. Santacroce (1992). Steady-state magma supply in the last 3400 years of Vesuvian activity, Acta Volcanol. 2, 147–159. Civetta, L., M. D’Antonio, S. de Lorenzo, V. Di Renzo, and P. Gasparini (2004). Thermal and geochemical constraints on the “deep” magmatic structure of Mt. Vesuvius, J. Volcanol. Geother. Res. 133 (1–4), 1–12. Di Maio, R., P. Mauriello, D. Patella, Z. Petrillo, S. Piscitelli, and A. Siniscalchi (1998). Electric and electromagnetic outline of the Mount Somma–Vesuvius structural setting, J. Volcanol. Geother. Res. 82, 219–238. Di Vito, M. A., R. Sulpizio, G. Zanchetta, and G. Calderoni (1999). The geology of south western slopes of Somma–Vesuvius, Italy, as inferred by borehole stratigraphies and cores, Acta Vulcanol. 10, 383–393. Gasparini, P., and Tomoves Working Group (1998). Looking inside MountVesuvius, EOS 79, 229–232. Iyer, H. M. (1992). Seismological detection and delineation of magma chambers: present status with emphasis on the western USA, in Volcanic Seismology, P. Gasparini, R. Scarpa, and K. Aki (Editors), Springer-Verlag, New York, 299–338. Iyer, H. M., J. R. Evans, P. B. Dawson, D. A. Stauber, and U. Achauer (1990). Differences in magma storage in different volcanic environments as revealed by seismic tomography: silicic volcanic centers and subduction-related volcanoes, in Magma Transport and Storage, M. P. Ryan (Editor), Wiley, New York, 293–316. Lomax, A., J. Virieux, P. Volantand, and C. Berge (2000). Probabilistic earthquake location in 3D and layered models: introduction to a Metropolis-Gibbs method and comparison with linear locations, in Advances in Seismic Event Location, C. H. Thurber and N. Rabinowitz (Editors), Kluwer, Amsterdam, 101–134. Lomax, A., A. Zollo, P. Capuano, and J. Virieux (2001). Precise, absolute earthquake location under Somma–Vesuvius volcano using a new 3D velocity model, Geophys. J. Int. 146, 313–331. Marianelli, P., N. Metrich, and A. Sbrana (1999). Shallow and deep reservoir involved in the magma supply of the 1944 eruption of Vesuvius, Bull. Volcanol. 61, 48–63. Matsumoto, S., and A. Hasegawa (1996). Distinct S wave reflector in the midcrust beneath Nikko–Shirane volcano in the northeastern Japan arc, J. Geophys. Res. 101, 3067–3083. Naess, O. E., and L. Bruland (1985). Stacking methods other than simple summation, in Developments in Geophysical Methods 6, A. A. Fitch (Editor), Elsevier Science London, 189–223. Neidell, N. S., and M. S. Taner (1971). Semblance and other coherency measurements for multichannel data, Geophysics 36, 482–497. Principe, C., M. Rosi, R. Santacroce, and A. Sbrana (1987). Geophysics, in Somma-Vesuvius, R. Santacroce (Editor), CNR Editions, Rome, 11–52. Rinehart, E., and A. R. Sanford (1981). Upper crustal structure of the Rio Grande Rift near Socorro, New Mexico, from inversion of microearthquake S-wave reflections, Bull. Seism. Soc. Am. 71, 437–450. Ryan, M. P. (1994). Neutral-buoyancy controlled magma transport and storage in mid-ocean ridge magma reservoirs and their sheeted-dike complex: a summary of basic relationships, in Magmatic Systems, M. P. Ryan (Editor), Vol. 2, Academic, London, 97–138. Sanders, C. O. (1984). Location and configuration of magma bodies beneath Long Valley, California, determined from anomalous earthquake signals, J. Geophys. Res. 89, 8287–8302. Sanford, A. R., O. Alptekinand, and T. R. Toppozada (1973). Use of reflection phases on microearthquake seismograms to map an unusual discontinuity beneath the Rio Grande Rift, Bull. Seism. Soc. Am. 63, 2021–2034. Sheriff, R. E., and L. P. Geldart (1982). Exploration Seismology (in 2 Vol.), Cambridge Univ. Press, New York. Stroujkova, A. F., and P. E. Malin (2000). A magma mass beneath Casa Diablo? Further evidence from reflected seismic waves, Bull. Seism. Soc. Am. 90, 500–511. Yilmaz, O. (1987). Seismic data processing, in Investigations in Geophysics, B. Nictzel (Editor), Vol. 2, Soc. Expl. Geophys. Tulsa, Oklahoma. Zollo, A., P. Gasparini, J. Virieux, H. Le Meur, G. De Natale, G. Biella, E. Boschi, P. Capuano, R. de Franco, P. Dell’Aversana, R. De Matteis, I. Guerra, G. Iannaccone, L. Mirabileand, and G. Vilardo (1996). Seismic evidence for a low-velocity zone in the upper crust beneath Mount Vesuvius, Science 274, 592–594. Zollo, A., L. D’Auria, R. De Matteis, A. Herrero, J. Virieux, and P. Gasparini (2002a). Bayesian estimation of 2-D P-velocity models from active seismic arrival time data: imaging of the shallow structure of Mt. Vesuvius (southern Italy), Geophys. J. Int. 151, 556–582. Zollo, A., W. Marzocchi, P. Capuano, A. Lomax, and G. Iannaccone (2002b). Space and time behaviour of seismic activity at Mt. Vesuvius volcano, southern Italy, Bull. Seism. Soc. Am. 92, 625–640.en
dc.description.fulltextpartially_openen
dc.contributor.authorNisii, V.en
dc.contributor.authorZollo, A.en
dc.contributor.authorIannaccone, G.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.orcid0000-0002-8191-9566-
crisitem.author.orcid0000-0002-1323-9016-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent05. General-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Nisii.pdf605.27 kBAdobe PDF
bssa.htmredirect - bssa469 BHTMLView/Open
Show simple item record

Page view(s)

150
checked on Apr 24, 2024

Download(s)

76
checked on Apr 24, 2024

Google ScholarTM

Check