Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/5082
DC FieldValueLanguage
dc.contributor.authorallDel Gaudio, P.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallDi Toro, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallHan, R.; Department of Earth and Environmental Sciences, Korea University, Seoul South Koreaen
dc.contributor.authorallHirose, T.; Kochi Institute for Core Sample Research, JAMSTEC, Kochi Japanen
dc.contributor.authorallNielsen, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallShimamoto, T.; Department of Earth and Planetary Systems Science Graduate School of Science Hiroshima University, Higashi-Hiroshima Japanen
dc.contributor.authorallCavallo, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.date.accessioned2009-06-22T07:09:40Zen
dc.date.available2009-06-22T07:09:40Zen
dc.date.issued2009-06-13en
dc.identifier.urihttp://hdl.handle.net/2122/5082en
dc.description.abstractThe evolution of the frictional strength along a fault at seismic slip rates (about 1 m/s) is a key factor controlling earthquake mechanics. At mantle depths, friction-induced melting and melt lubrication may influence earthquake slip and seismological data. We report on laboratory experiments designed to investigate dynamic fault strength and frictional melting processes in mantle rocks. We performed 20 experiments with Balmuccia peridotite in a high-velocity rotary shear apparatus and cylindrical samples (21.8 mm in diameter) over a wide range of normal stresses (5.4–16.1 MPa), slip rates (0.23–1.14 m/s), and displacements (1.5–71 m). During the experiments, shear stress evolved with cumulative displacement in five main stages (stages 1–5). In stage 1 (first strengthening), the coefficient of friction m increased up to 0.4–0.7 (first peak in friction). In stage 2 (abrupt firstweakening), m decreased to about 0.25–0.40. In stage 3 (gradual second strengthening), shear stress increased toward a second peak in friction (m = 0.30–0.40). In stage 4 (gradual second weakening), the shear stress decreased toward a steady state value (stage 5) with m = 0.15. Stages 1 and 2 are of too short duration to be investigated in detail with the current experimental configuration. By interrupting the experiments during stages 3, 4, and 5, microstructural (Field Emission Scanning Electron Microscope) and geochemical (Electron Probe Micro-Analyzer and Energy Dispersive X-Ray Spectroscopy) analysis of the slipping zone suggest that second strengthening (stage 3) is associated with the production of a grain-supported melt-poor layer, while second weakening (stage 4) and steady state (stage 5) are associated with the formation of a continuous melt-rich layer with an estimated temperature up to 1780 C. Microstructures formed during the experiments were very similar to those found in natural ultramafic pseudotachylytes. By performing experiments at different normal stresses and slip rates, (1) the ‘‘thermal’’ (as it includes the thermally activated first and second weakening) slip distance to achieve steady state from the first peak in strength decreased with increasing normal stress and slip rate and (2) the steady state shear stress slightly increased with increasing normal stress and, for a given normal stress, decreased with increasing slip rate. The ratio of shear stress versus normal stress was about 0.15, well below the typical friction coefficient of rocks (0.6–0.8). The dependence of steady state shear stress with normal stress was described by means of a constitutive equation for melt lubrication. The presence of microstructures similar to those found in natural pseudotachylytes and the determination of a constitutive equation that describes the experimental data allows extrapolation of the experimental observations to natural conditions and to the study of rupture dynamics in mantle rocks.en
dc.description.sponsorshipFIRB-MIUR project ‘‘Sviluppo Nuove Tecnologie per la Protezione e Difesa del Territorio dai Rischi Naturali. Progetti di Eccellenza Fondazione Cassa di Risparmio di Padova e Rovigo (CARIPARO) The European Research Council Starting Grant Project 205175 (USEMS)en
dc.language.isoEnglishen
dc.publisher.nameAGUen
dc.relation.ispartofJournal of Geophysical Researchen
dc.relation.ispartofseriesB6/114 (2009)en
dc.subjectFrictional meltingen
dc.subjectPseudotachylyteen
dc.subjectPeridotiteen
dc.subjectSlipen
dc.titleFrictional melting of peridotite and seismic slipen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumberB06306en
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneousen
dc.identifier.doi10.1029/2008JB005990en
dc.relation.referencesAndersen, T. B., and H. Austrheim (2006), Fossil earthquakes recorded by pseudotachylytes in mantle peridotite from the Alpine subduction complex of Corsica, Earth Planet. Sci. Lett., 242, 58 – 72, doi:10.1016/ j.epsl.2005.11.058. Andersen, T. B., K. Mair, H. Austrheim, Y. Y. Podladchikov, and J. C. Vrijmoed (2008), Stress release in exhumed intermediate and deep earthquakes determined from ultramafic pseudotachylyte, Geology, 36, 995– 998, doi:10.1130/G25230A.1. Beeler, N. M., T. E. Tullis, M. Blanpied, and J. Weeks (1996), Frictional behavior of large displacement experimental faults, J. Geophys. Res., 101(B4), 8697– 8715, doi:10.1029/96JB00411. Beeler, N. M., T. E. Tullis, and D. L. Goldsby (2008), Constitutive relationships and physical basis of fault strength due to flash heating, J. Geophys. Res., 113, B01401, doi:10.1029/2007JB004988. Bouchon, M., and P. Ihmle´ (1999), Stress drop and frictional heating during the 1994 deep Bolivia earthquake, Geophys. Res. Lett., 26(23), 3521– 3524, doi:10.1029/1999GL005410. Boutareaud, S., D.-G. Calugaru, R. Han, O. Fabbri, K. Mizoguchi, A. Tsutsumi, and T. Shimamoto (2008), Clay-clast aggregates: A new textural evidence for seismic fault sliding?, Geophys. Res. Lett., 35, L05302, doi:10.1029/2007GL032554. Bowden, F. P., and D. Tabor (1950), The Friction and Lubrication of Solids, Clarendon Press, Oxford, U. K. Braeck, S., and Y. Y. Podladchikov (2007), Spontaneous thermal runaway as an ultimate failure mechanism of materials, Phys. Rev. Lett., 98, 095504–095508, doi:10.1103/PhysRevLett.98.095504. Bridgman, P. W. (1936), Shearing phenomena at high pressure of possible importance for geology, J. Geol., 44, 653– 669. Byerlee, J. D. (1978), Friction of rocks, Pure Appl. Geophys., 116, 615– 626, doi:10.1007/BF00876528. Cocks, M. (1957), Role of atmospheric oxidation in high speed sliding phenomena, J. Appl. Phys., 28, 835– 843, doi:10.1063/1.1722871. Costa, A. (2005), Viscosity of high crystal content melts: Dependence on solid fraction, Geophys. Res. Lett., 32, L22308, doi:10.1029/ 2005GL024303. Di Toro, G., and G. Pennacchioni (2004), Superheated friction-induced melts in zoned pseudotachylytes within the Adamello tonalites (Italian Southern Alps), J. Struct. Geol., 26, 1783 – 1801, doi:10.1016/ j.jsg.2004.03.001. Di Toro, G., D. L. Goldsby, and T. E. Tullis (2004), Friction falls towards zero in quartz rock as slip velocity approaches seismic rates, Nature, 427, 436–439, doi:10.1038/nature02249. Di Toro, G., T. Hirose, S. Nielsen, G. Pennacchioni, and T. Shimamoto (2006a), Natural and experimental evidence of melt lubrication of faults during earthquakes, Science, 311, 647 – 649, doi:10.1126/ science.1121012. Di Toro, G., T. Hirose, S. Nielsen, and T. Shimamoto (2006b), Relating high-velocity rock friction experiments to coseismic slip in the presence of melts, in Radiated Energy and the Physics of Faulting, Geophys. Monogr. Ser., vol. 170, edited by R. Abercrombie et al., pp. 121– 134, AGU, Washington, D. C. Dieterich, J. H., and B. D. Kilgore (1994), Direct observations of frictional contacts: New insights for state-dependent properties, Pure Appl. Geophys., 143, 283–302, doi:10.1007/BF00874332. Fialko, Y., and Y. Khazan (2005), Fusion by earthquake fault friction: Stick or slip?, J. Geophys. Res., 110, B12407, doi:10.1029/2005JB003869. Frohlich, C. (2006), Deep Earthquakes, 573 pp., Cambridge Univ. Press, Cambridge, U. K. Goldsby, D. L., and T. E. Tullis (2002), Low frictional strength of quartz rocks at subseismic slip rates, Geophys. Res. Lett., 29(17), 1844, doi:10.1029/2002GL015240. Griggs, D., and J. Handin (1960), Observations on fracture and a hypothesis of earthquakes, Geol. Soc. Am. Mem., 79, 343– 373. Gualtieri, A. F., M. Gemmi, and M. Dapiaggi (2003), Phase transformations and reaction kinetics during the temperature-induced oxidation of natural olivine, Am. Mineral., 88, 1560–1574. Han, R., T. Shimamoto, T. Hirose, J.-H. Ree, and J. Ando (2007a), Ultralow friction of carbonate faults caused by thermal decomposition, Science, 316, 878– 881, doi:10.1126/science.1139763. Han, R., T. Shimamoto, J. Ando, and J.-H. Ree (2007b), Seismic slip record in carbonate-bearing fault zones: An insight from high-velocity friction experiments on siderite gouge, Geology, 35, 1131–1134, doi:10.1130/ G24106A.1. Heaton, T. H. (1990), Evidence for and implications of self-healing pulses of slip in earthquake rupture, Phys. Earth Planet. Inter., 64, 1–20, doi:10.1016/0031-9201(90)90002-F. Hirose, T., and M. Bystricky (2007), Extreme dynamic weakening of faults during dehydration by coseismic shear heating, Geophys. Res. Lett., 34, L14311, doi:10.1029/2007GL030049. Hirose, T., and T. Shimamoto (2003), Fractal dimension of molten surfaces as a possible parameter to infer the slip-weakening distance of faults from natural pseudotachylytes, J. Struct. Geol., 25, 1569– 1574, doi:10.1016/ S0191-8141(03)00009-9. Hirose, T., and T. Shimamoto (2005), Growth of molten zone as a mechanism of slip weakening of simulated faults in gabbro during frictional melting, J. Geophys. Res., 110, B05202, doi:10.1029/2004JB003207. Ide, S., and M. Takeo (1997), Determination of constitutive relations of fault slip based on seismic wave analysis, J. Geophys. Res., 102(B12), 27,379– 27,391, doi:10.1029/97JB02675. John, T., S. Medvedev, L. H. Ru¨pke, T. B. Andersen, Y. Y. Podladchikov, and H. Austrheim (2009), Generation of intermediate-depth earthquakes by self-localizing thermal runaway, Nat. Geosci., 2, 137 – 140, doi:10.1038/ngeo419. Kanamori, H., D. L. Anderson, and T. H. Heaton (1998), Frictional melting during the rupture of the 1994 Bolivian earthquake, Science, 279, 839– 842, doi:10.1126/science.279.5352.839. Karato, S. I. (2008), Deformation of Earth Materials, 463 pp., Cambridge Univ. Press, Cambridge, U. K. Kelemen, P. B., and G. Hirth (2007), A periodic shear-heating mechanism for intermediate-depth earthquakes in the mantle, Nature, 446, 787– 790, doi:10.1038/nature05717. Lim, S. C., M. F. Ashby, and J. H. Brunton (1989), The effect of sliding conditions on the dry friction of metals, Acta Metall., 37, 767–772, doi:10.1016/0001-6160(89)90003-5. Marone, C. (1998), Laboratory-derived friction laws and their application to seismic faulting, Annu. Rev. Earth Planet. Sci., 26, 643 – 696, doi:10.1146/annurev.earth.26.1.643. Marone, C., and B. Kilgore (1993), Scaling of the critical slip distance for seismic faulting with shear strain in fault zones, Nature, 362, 618– 622, doi:10.1038/362618a0. Mizoguchi, K., T. Hirose, T. Shimamoto, and E. Fukuyama (2007), Reconstruction of seismic faulting by high-velocity friction experiments: An example of the 1995 Kobe earthquake, Geophys. Res. Lett., 34, L01308, doi:10.1029/2006GL027931. Nielsen, S., G. Di Toro, T. Hirose, and T. Shimamoto (2008), Frictional melt and seismic slip, J. Geophys. Res., 113, B01308, doi:10.1029/ 2007JB005122. Obata, M., and S. Karato (1995), Ultramafic pseudotachylite from the Balmuccia peridotite, Ivrea Verbano Zone, northern Italy, Tectonophysics, 242, 313– 328, doi:10.1016/0040-1951(94)00228-2. Ogawa, M. (1987), Shear instability in a viscoelastic material as the cause of deep focus earthquakes, J. Geophys. Res., 92(B13), 13,801– 13,810, doi:10.1029/JB092iB13p13801. Ohnaka, M. (2003), A constitutive scaling law and a unified comprehension for frictional slip failure, shear fracture of intact rock, and earthquake rupture, J. Geophys. Res., 108(B2), 2080, doi:10.1029/2000JB000123. Paterson, M. S., and T.-F. Wong (2005), Experimental Rock Deformation— The Brittle Field, 2nd ed., 348 pp., Springer, Berlin. Persson, B. N. J. (2000), Sliding Friction: Physical Principles and Applications, Springer, Heidelberg, Germany. Philpotts, A. R. (1990), Principles of Igneous and Metamorphic Petrology, 498 pp., Prentice Hall, Englewood Cliffs, N. J. Piccardo, B. G., G. Ranalli, M. Marasco, and M. Padovano (2008), Ultramafic pseudotachylytes in the Mt. Moncuni peridotite (Lanzo Massif, western Alps): Tectonic evolution and upper mantle seismicity, Period. Mineral., 76, 181– 197. Reid, H. F. (1910), The California Earthquake of April 18, 1906: Report of the State Earthquake Investigation: The Mechanics of the Earthquake, vol. 2, Carnegie Inst. of Wash., Washington, D. C. Rempel, A. W. (2006), The effects of flash-weakening and damage on the evolution of fault strength and temperature, in Radiated Energy and the Physics of Faulting, Geophys. Monogr. Ser., vol. 170, edited by R. Abercrombie et al., pp. 263– 270, AGU, Washington, D. C. Rice, J. R. (2006), Heating and weakening of faults during earthquake slip, J. Geophys. Res., 111, B05311, doi:10.1029/2005JB004006. Scholz, C. H. (2002), The Mechanics of Earthquakes and Faulting, 2nd ed., 471 pp., Cambridge Univ. Press, Cambridge, U. K. Shimamoto, T., and A. Tsutsumi (1994), A new rotary-shear high-speed frictional testing machine: Its basic design and scope of research, Struct. Geol. J. Tect. Res. Group Jpn., 39, 65– 78. Sibson, R. H. (1977), Fault rocks and fault mechanisms, J. Geol. Soc., 133, 191–213, doi:10.1144/gsjgs.133.3.0191. Spray, J. G. (1987), Artificial generation of pseudotachylyte using friction welding apparatus: Simulation of melting on a fault plane, J. Struct. Geol., 9, 49–60, doi:10.1016/0191-8141(87)90043-5. Spray, J. G. (1992), A physical basis for the frictional melting of some rockforming minerals, Tectonophysics, 204, 205 – 221, doi:10.1016/0040- 1951(92)90308-S. Spray, J. G. (1995), Pseudotachylyte controversy: Fact or friction?, Geology, 23, 1119 – 1122, doi:10.1130/0091-7613(1995)023<1119:PCFOF>2.3. CO;2. Spray, J. G. (2005), Evidence for melt lubrication during large earthquakes, Geophys. Res. Lett., 32, L07301, doi:10.1029/2004GL022293. Tsutsumi, A., and T. Shimamoto (1997), High-velocity frictional properties of gabbro, Geophys. Res. Lett., 24(6), 699 – 702, doi:10.1029/ 97GL00503. Tullis, T. E. (2008), Friction of rock at earthquake slip rates, in The Treatise of Geophysics, vol. 4, edited by H. Kanamori, pp. 131– 152, Elsevier, Amsterdam. Ueda, T., M. Obata, G. Di Toro, K. Kanagawa, and K. Ozawa (2008), Mantle earthquakes frozen in mylonitized ultramafic pseudotachylytes of spinel-lherzolite facies, Geology, 36(8), 607 – 610, doi:10.1130/ G24739A.1en
dc.description.obiettivoSpecifico2.3. TTC - Laboratori di chimica e fisica delle rocceen
dc.description.journalTypeJCR Journalen
dc.description.fulltextopenen
dc.contributor.authorDel Gaudio, P.en
dc.contributor.authorDi Toro, G.en
dc.contributor.authorHan, R.en
dc.contributor.authorHirose, T.en
dc.contributor.authorNielsen, S.en
dc.contributor.authorShimamoto, T.en
dc.contributor.authorCavallo, A.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentDepartment of Earth and Environmental Sciences, Korea University, Seoul South Koreaen
dc.contributor.departmentKochi Institute for Core Sample Research, JAMSTEC, Kochi Japanen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentDepartment of Earth and Planetary Systems Science Graduate School of Science Hiroshima University, Higashi-Hiroshima Japanen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptDepartment of Earth and Environmental Sciences, Korea University, Seoul South Korea-
crisitem.author.deptKochi Institute for Core Sample Research, Japan Agency Marine Earth Science and Technology, Kochi, Japan.-
crisitem.author.deptDurham University, Durham, UK-
crisitem.author.deptDepartment of Earth and Planetary Systems Science, University of Hiroshima, Hiroshima, Japan.-
crisitem.author.orcid0000-0002-0977-1237-
crisitem.author.orcid0000-0002-6618-3474-
crisitem.author.orcid0000-0002-5397-3346-
crisitem.author.orcid0000-0002-9214-2932-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat
Del Gaudio et al. JGR in press 2009.pdfAccepted article2.16 MBAdobe PDFView/Open
Show simple item record

WEB OF SCIENCETM
Citations 50

46
checked on Feb 10, 2021

Page view(s) 50

254
checked on Apr 24, 2024

Download(s) 20

331
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric