Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/498
DC FieldValueLanguage
dc.contributor.authorallMacedonio, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallNeri, A.; Istituto Nazionale di Geofisica e Vulcanologia, Centro per la Modellistica Fisica e Pericolosita` dei Processi Vulcanicien
dc.contributor.authorallMarti, J.; Istitut de Ciences de le Terra Jaume Almera, CSIC, Barcelona, Spainen
dc.contributor.authorallFolch, A.; Istitut de Ciences de le Terra Jaume Almera, CSIC, Barcelona, Spainen
dc.date.accessioned2005-10-26T10:23:35Zen
dc.date.available2005-10-26T10:23:35Zen
dc.date.issued2005en
dc.identifier.urihttp://hdl.handle.net/2122/498en
dc.description.abstractThe temporal evolution of fundamental flow conditions in the magma chamber plus conduit system–such as pressure, velocity, mass flow-rate, erupted mass, etc.–during sustained magmatic explosive eruptions was investigated. To this aim, simplified one-dimensional and isothermal models of magma chamber emptying and conduit flow were developed and coupled together. The chamber model assumed an homogeneous composition of magma and a vertical profile of water content. The chamber could have a cylindrical, elliptical or spherical rigid geometry. Inside the chamber, magma was assumed to be in hydrostatic equilibrium both before and during the eruption. Since the time-scale of pressure variations at the conduit inlet–of the order of hours–is much longer than the travel time of magma in the conduit–of the order of a few minutes–the flow in the conduit was assumed as at steady-state. The one dimensional mass and momentum balance equations were solved along a circular conduit with constant diameter assuming choked-flow conditions at the exit. Bubble nucleation was considered when the homogeneous flow pressure dropped below the nucleation pressure given the total water content and the solubility law. Above the nucleation level, bubbles and liquid magma were considered in mechanical equilibrium. The same equilibrium assumption was made above the fragmentation level between gas and pyroclasts. Due to the hydrostatic hypothesis, the integration of the density distribution in the chamber allowed to obtain the total mass in the chamber as a function of pressure at the chamber top and, through the conduit model, as a function of time. Simulation results pertaining to rhyolitic and basaltic magmas defined at the Volcanic Eruption Mechanism Modeling Workshops (Durham, NH, 2002; Nice, France, 2003) are presented. Important flow variables, such as pressure, density, velocity, shear stress in the chamber and conduit, are discussed as a function of time and magma chamber and conduit properties. Results indicate that vent variables react in different ways to the pressure variation of the chamber. Pressure, density and mass flow-rate show relative variations of the same order of magnitude as the conduit inlet pressure, whereas velocity is more constant in time. Sill-like chambers produce also significantly longer and more voluminous eruptions than dike-like chambers. Water content stratification in the chamber and the increase of chamber depth significantly reduce the eruption duration and volume. Maximum erupted mass fractions of about 0.2 are computed for small water-saturated and shallow chambers.en
dc.format.extent900961 bytesen
dc.format.extent497 bytesen
dc.format.mimetypeapplication/pdfen
dc.format.mimetypetext/htmlen
dc.language.isoEnglishen
dc.publisher.nameElsevieren
dc.relation.ispartofJournal of volcanology and geothermal researchen
dc.relation.ispartofseries143en
dc.subjectExplosive eruptionsen
dc.subjectMagma chamber dischargeen
dc.subjectConduit flowen
dc.subjectTemporal evolutionen
dc.subjectPressure evolutionen
dc.titleTemporal evolution of flow conditions in sustained magmatic explosive eruptionsen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber153-172en
dc.identifier.URLwww.elsevier.com/locate/jvolgeoresen
dc.subject.INGV05. General::05.01. Computational geophysics::05.01.05. Algorithms and implementationen
dc.identifier.doi10.1016/j.jvolgeores.2004.09.015en
dc.relation.referencesBird, R.B., Stewart, W.E., Lightfoot, E.N., 1960. Transport Phenomena. Wiley and Sons, New York. Blake, S., 1981. Volcanism and the dynamics of open magma chambers. Nature 289, 783– 785. Bower, S.M.,Woods, A.W., 1997. Control of magma volatile content and chamber depth on the mass erupted during explosive volcanic eruptions. J. Geophys. Res. 102, 10273– 10290. Bower, S.M., Woods, A.W., 1998. On the influence of magma chambers in controlling the evolution of explosive volcanic eruptions. J. Volcanol. Geotherm. Res. 86, 67–78. Buresti, G., Casarosa, C., 1989. One-dimensional adiabatic flow of equilibrium gas-particles mixtures in long vertical ducts with friction. J. Fluid Mech. 203, 251– 272. Dobran, F., 1992. Nonequilibrium flow in volcanic conduits and applications to the eruptions of Mt. St. Helens on May 18, 1980, and Vesuvius in AD 79. J. Volcanol. Geotherm. Res. 49, 285– 311. Druitt, T.H., Sparks, R.S.J., 1984. On the formation of calderas during ignimbrite eruptions. Nature 310, 679– 681. Dufek, J., Bergantz, G., 2005. Transient two-dimensional dynamics in the upper conduit of a rhyolitic eruption: a comparison of closure models for the granular stress. J. Volcanol. Geotherm. Res. 143, 113–132. (this volume). Folch, A., Martı`, J., Codina, R., Vazquez, M., 1998. A numerical model for temporal variations durino explosive central vent eruptions. J. Geophys. Res. 103, 20883– 20899. Giordano, D., Dingwell, D.B., 2003. Viscosity of hydrous Etna basalt: implications for Plinian-style basaltic eruptions. Bull. Volcanol. Hess, K.U., Dingwell, D.B., 1996. Viscosities of hydrous leucogranitic melts: a non-Arrhenian model. Am. Mineral. 81, 1297–1300. Ishii, M., Zuber, N., 1979. Drag coefficient and relative velocity in bubbly, droplet and particulate flows. AIChE J. 25, 843– 855. Lejeune, A.M., Richet, P., 1995. Rheology of crystals-bearing silicate melts: an experimental study at high viscosities. J. Geophys. Res. 100, 4215–4229. Liu, Yang, Zhang, Y., Behrens, H., 2005. Solubility of H2O in rhyolitic melts at low pressures and a new empirical model for mixed H2O-CO2 solubility in rhyolitic melts. J. Volcanol. Geotherm. Res. 143, 219– 235. (this volume). Llewellin, E.W., Manga, M., 2005. Bubble suspension rheology and implications for conduit flow. J. Volcanol. Geotherm. Res. 143, 205– 217. (this volume). Llewellin, E.W., Mader, H.M., Wilson, S.D.R., 2002. The constitutive equations and flow dynamics of bubbly magmas. Geophys. Res. Lett. 29 (art.No.2170). Macedonio, G., Dobran, F., Neri, A., 1994. Erosion processes in volcanic conduits and an application to the AD 79 eruption of Vesuvius. Earth Planet. Sci. Lett. 121, 137– 152. Manga, M., Loewenberg, M., 2001. Viscosity of magmas containing highly deformable bubbles. J. Volcanol. Geotherm. Res. 105, 19–24. Marsh, B.D., 1981. On the crystallinity, probability of occurrence, and rheology of lava and magma. Contrib. Mineral. Petrol. 78, 85– 98. Martı`, J., Folch, A., Neri, A., Macedonio, G., 2000. Pressure evolution during explosive caldera-forming eruptions. Earth Planet. Sci. Lett. 175, 275– 287. Mastin, L., Ghiorso, 2000. A numerical program for steady-state flow of magma–gas mixtures through vertical eruptive conduits. U.S. Geol. Surv. Open–file Report 2000–209. Melnik, O., 2000. Dynamics of two-phase conduit flow of highviscosity gas-saturated magma: large variations of sustained explosive eruption intensity. Bull. Volcanol. 62, 153– 170. Melnik, O., Sparks, R.S.J., 1999. Nonlinear dynamics of lava dome extrusion. Nature 402, 37– 41. Melnik, O., 2000. Dynamics of two-phase conduit flow of highviscosity gas-saturated magma: large variations of sustained explosive eruption intensity. Bull. Volcanol. 62, 153– 170. Melnik, O., Barmin, A.A., Sparks, R.S.J., 2005. Dynamics of magma flow inside volcanic conduits with bubble overpressure buildup and gas loss through permeable magma. J. Volcanol. Geotherm. Res. 143, 53– 68. (this volume). Pal, R., 2003. Rheological behaviour of bubble-bearing magmas. Earth Planet. Sci. Lett. 207, 165– 179. Papale, P., 1999. Strain-induced magma fragmentation in explosive eruptions. Nature 397, 425– 428. Papale, P., 2001. The dynamics of magma flow in volcanic conduits with variable fragmentation efficiency and non-equilibrium pumice degassing. J. Geophys. Res. 106, 11043– 11065. Papale, P., in preparation. Next progresses in the modelling of volcanic conduit flow dynamics. J. Volcanol. Geotherm. Res. Sahagian, D., 2005. Volcanic eruption mechanisms: insights from inter-comparison of models of conduit processes. J. Volcanol. Geotherm. Res. 143, 1– 15. (this volume). Scandone, R., 1996. Factors controlling the temporal evolution of explosive eruptions. J. Volcanol. Geotherm. Res. 72, 71– 83. Shapiro, A.H., 1953. Dynamics and Thermodynamics of Compressible Fluid Flow. The Ronald Press Company, New York. Sigurdsson, H., Houghton, B., Rymer, H., Stix, J., McNutt, S., 1999. Enciclopedia of Volcanoes. Academic Press. 1000 pp. Sparks, R.S.J., 1978. The dynamics of bubble formation and growth in magmas: a review and analysis. J. Volcanol. Geotherm. Res. 3, 1 –37. Sparks, R.S.J., Bursik, M.I., Carey, S.N., Gilbert, J.S., Glaze, L.S., Sigurdsson, H., Woods, A.W., 1997. Volcanic Plumes. Wiley, New York. 574 pp. Spera, F.J., 1984. Some numerical experiments on the withdrawal of magma from crustal reservoirs. J. Geophys. Res. 89, 8222– 8236. Tait, S., Jaupart, C., Vergniolle, S., 1989. Pressure, gas content and eruption periodicity of a shallow, crystallising magma chamber. Earth Planet. Sci. Lett. 92, 107–123. Touloukian, Y.S., Judd,W.R., Roy, R.F., 1989. Physical Properties of Rocks and Minerals. Data Series on Material Properties, vol. 1–2. McGraw-Hill, New York. 548 pp. Wilson, L., Sparks, R.S.J., Walker, G.P.L., 1980. Explosive volcanic eruptions: IV. The control of magma properties and conduit geometry on eruptive column behaviours. Geophys. J. R. Astron. Soc. 63, 117– 148. Woo, G., 1999. The Mathematics of Natural Catastrophes. Imperial College Press. 292 pp. Woods, A.W., Koyaguchi, T., 1994. Transitions between explosive and effusive eruptions of silicic magmas. Nature 370, 641– 644. Zhang, Y., 1999a. H2O in rhyolitic glasses and melts: measurements, speciation, solubility, and diffusion. Rev. Geophys. 169, 243– 262. Zhang, Y., 1999b. A criterion for the fragmentation of bubbly magma based on brittle failure theory. Nature 402, 648–650.en
dc.description.fulltextpartially_openen
dc.contributor.authorMacedonio, G.en
dc.contributor.authorNeri, A.en
dc.contributor.authorMarti, J.en
dc.contributor.authorFolch, A.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Centro per la Modellistica Fisica e Pericolosita` dei Processi Vulcanicien
dc.contributor.departmentIstitut de Ciences de le Terra Jaume Almera, CSIC, Barcelona, Spainen
dc.contributor.departmentIstitut de Ciences de le Terra Jaume Almera, CSIC, Barcelona, Spainen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Pisa, Pisa, Italia-
crisitem.author.deptInstitute of Earth Sciences Jaume Almera, ICTJA-CSIC, Barcelona, Spain-
crisitem.author.deptBarcelona Supercomputing Center, Barcelona, Spain-
crisitem.author.orcid0000-0001-6604-1479-
crisitem.author.orcid0000-0002-3536-3624-
crisitem.author.orcid0000-0002-0677-6366-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent05. General-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat
journal volcanology geothermal research.htmredirect - journal of volcanology and geothermal research497 BHTMLView/Open
macedonio2.pdf879.84 kBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

23
checked on Feb 10, 2021

Page view(s) 20

267
checked on Apr 24, 2024

Download(s)

82
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric