Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/4272
DC FieldValueLanguage
dc.contributor.authorallGualdi, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
dc.contributor.authorallScoccimarro, E.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
dc.contributor.authorallNavarra, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
dc.date.accessioned2008-11-25T10:11:54Zen
dc.date.available2008-11-25T10:11:54Zen
dc.date.issued2008-10-15en
dc.identifier.urihttp://hdl.handle.net/2122/4272en
dc.description.abstractThis study investigates the possible changes that greenhouse global warming might generate in the characteristics of tropical cyclones (TCs). The analysis has been performed using scenario climate simulations carried out with a fully coupled high-resolution global general circulation model. The capability of the model to reproduce a reasonably realistic TC climatology has been assessed by comparing the model results from a simulation of the twentieth century with observations. The model appears to be able to simulate tropical cyclone–like vortices with many features similar to the observed TCs. The simulated TC activity exhibits realistic geographical distribution, seasonal modulation, and interannual variability, suggesting that the model is able to reproduce the major basic mechanisms that link TC occurrence with large-scale circulation. The results from the climate scenarios reveal a substantial general reduction of TC frequency when the atmospheric CO2 concentration is doubled and quadrupled. The reduction appears particularly evident for the tropical western North Pacific (WNP) and North Atlantic (ATL). In the NWP the weaker TC activity seems to be associated with reduced convective instabilities. In the ATL region the weaker TC activity seems to be due to both the increased stability of the atmosphere and a stronger vertical wind shear. Despite the generally reduced TC activity, there is evidence of increased rainfall associated with the simulated cyclones. Finally, the action of the TCs remains well confined to the tropical region and the peak of TC number remains equatorward of 20° latitude in both hemispheres, notwithstanding the overall warming of the tropical upper ocean and the expansion poleward of warm SSTs.en
dc.description.sponsorshipEuro-Mediterranean Centre for Climate Change. European Community project ENSEMBLES, Contract GOCE-CT-2003-505539.en
dc.language.isoEnglishen
dc.relation.ispartofJournal of Climateen
dc.relation.ispartofseries/21 (2008)en
dc.subjectTropical Cycloneen
dc.subjectClimateen
dc.titleChanges in Tropical Cyclone Activity due to Global Warming: Results from a High-Resolution Coupled General Circulation Model.en
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber5204-5228en
dc.subject.INGV01. Atmosphere::01.01. Atmosphere::01.01.02. Climateen
dc.identifier.doi10.1175/2008JCLI1921.1en
dc.relation.referencesAiyyer, A. R., and C. Thorncroft, 2006: Climatology of vertical wind shear over the tropical Atlantic. J. Climate, 19, 2969– 2983. 5226 JOURNAL OF CLIMATE VOLUME 21 Anthes, R. A., R. W. Corell, G. Holland, J. W. Hurrel, M. C. Mac- Cracken, and K. E. Trenberth, 2006: Hurricanes and global warming—Potential linkages and consequences. Bull. Amer. Meteor. Soc., 87, 623–628. Behera, S. K., J. J. Luo, S. Masson, P. Delecluse, S. Gualdi, A. Navarra, and T. Yamagata, 2005: Paramount impact of the Indian Ocean dipole on the East African short rains: A CGCM study. J. Climate, 18, 4514–4530. Bengtsson, L., M. Botzet, and M. Esch, 1995: Hurricane–type vortices in a general–circulation model. Tellus, 47A, 175–196. ——,——, and——, 1996: Will greenhouse gas–induced warming over the next 50 years lead to higher frequency and greater intensity of hurricanes? Tellus, 48A, 57–73. ——, K. I. Hodges, M. Esch, N. Keenlyside, L. Kornblueh, J.-J. Luo, and T. Yamagata, 2007: How may tropical cyclones change in a warmer climate? Tellus, 59A, 539–561. Bister, M., and K. A. Emanuel, 2002: Low frequency variability of tropical cyclone potential intensity 1. Interannual to interdecadal variability. J. Geophys. Res., 107, 4801, doi:10.1029/ 2001JD000776. Blanke, B., and P. Delecluse, 1993: Low frequency variability of the tropical Atlantic Ocean simulated by a general circulation model with mixed layer physics. J. Phys. Oceanogr., 23, 1363– 1388. Broccoli, A. J., and S. Manabe, 1990: Can existing climate models be used to study anthropogenic changes in tropical cyclone climate. Geophys. Res. Lett., 17, 1917–1920. Camargo, S. J., A. G. Barnston, and S. E. Zebiak, 2004: Properties of tropical cyclones in atmospheric general circulation models. International Research Institute for Climate Prediction Tech. Rep. 04-02, 72 pp. Chan, J. C.-L., 2000: Tropical cyclone activity over the western North Pacific associated with El Niño and La Niña events. J. Climate, 13, 2960–2972. Chauvin, F., J.-F. Royer, and M. Deque, 2006: Response of hurricane- type vortices to global warming as simulated by ARPEGE- Climat at high resolution. Climate Dyn., 27, 377–399. Chia, H. H., and C. F. Ropelewski, 2002: The interannual variability in the genesis location of tropical cyclones in the northwest Pacific. J. Climate, 15, 2934–2944. Delworth, T. L., and M. E. Mann, 2000: Observed and simulated multidecadal variability in the Northern Hemisphere. Climate Dyn., 16, 661–676. De Maria, M., J. A. Knaff, and B. H. Connell, 2001: A tropical cyclone genesis parameter for the tropical Atlantic. Wea. Forecasting, 16, 219–233. Dutton, J. F., C. J. Poulsen, and J. L. Evans, 2000: The effect of global climate change on the region of tropical convection in CSM1. Geophys. Res. Lett., 27, 3049–3052. Elsner, J. B., and B. Kocher, 2000: Global tropical cyclone activity: A link to the North Atlantic Oscillation. Geophys. Res. Lett., 27, 129–132. Emanuel, K. A., 1987: The dependence of hurricane intensity on climate. Nature, 326, 483–485. ——, 1994: Atmospheric Convection. Oxford University Press, 580 pp. ——, 2003: Tropical cyclones. Annu. Rev. Earth Planet. Sci., 31, 75–104. ——, 2005: Increasing destructiveness of tropical cyclones over the past 30 years. Nature, 436, 686–688. ——, and D. S. Nolan, 2004: Tropical cyclone activity and global climate. Preprints, 26th Conf. on Hurricanes and Tropical Meteorology, Miami, FL, Amer. Meteor. Soc., 10A.2. [Available online at http://ams.confex.com/ams/pdfpapers/75463. pdf.] Fichefet, T., and M. A. Morales-Maqueda, 1999: Modelling the influence of snow accumulation and snow–ice formation on the seasonal cycle of the Antarctic sea-ice cover. Climate Dyn., 15, 251–268. Frank, W. M., 1977: The structure and energetics of the tropical cyclone I. The storm structure. Mon. Wea. Rev., 105, 1119– 1135. ——, and G. S. Young, 2007: The interannual variability of tropical cyclones. Mon. Wea. Rev., 135, 3587–3598. Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150–155. Goldenberg, S. B., and L. J. Shapiro, 1996: Physical mechanisms for the association of El Niño and West African rainfall with Atlantic major hurricane activity. J. Climate, 9, 1169–1187. ——, C. W. Landsea, A. M. Mestas-Nuñez, and W. M. Gray, 2001: The recent increase in the Atlantic hurricane activity: Causes and implications. Science, 293, 474–479. Gray, W. M., 1968: Global view of the origin of tropical disturbances and storms. Mon. Wea. Rev., 96, 669–700. ——, 1979: Hurricanes: Their formation, structure and likely role in the tropical circulation. Meteorology over the Tropical Oceans, D. B. Shaw, Ed., Royal Meteorological Society, 155– 218. ——, 1984: Atlantic seasonal hurricane frequency. Part I: El Niño and 30-mb quasi-biennial oscillation influences. Mon. Wea. Rev., 112, 1649–1668. Gualdi, S., A. Navarra, E. Guilyardi, and P. Delecluse, 2003a: Assessment of the tropical Indo-Pacific climate in the SINTEX CGCM. Ann. Geophys., 46, 1–26. ——, E. Guilyardi, A. Navarra, S. Masina, and P. Delecluse, 2003b: The interannual variability in the tropical Indian Ocean as simulated by a CGCM. Climate Dyn., 20, 567–582. Guilyardi, E., P. Delecluse, S. Gualdi, and A. Navarra, 2003: Mechanisms for ENSO phase change in a coupled GCM. J. Climate, 16, 1141–1158. Haarsma, R. J., J. F. B. Mitchell, and C. A. Senior, 1993: Tropical disturbances in a GCM. Climate Dyn., 8, 247–257. Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 5686–5699. ——, M. Zhao, and B. Wyman, 2007: Dynamic radiative–convective equilibria using GCM column physics. J. Atmos. Sci., 64, 228–238. Henderson-Sellers, A., and Coauthors, 1998: Tropical cyclones and global climate change: A post-IPCC assessment. Bull. Amer. Meteor. Soc., 79, 19–38. Holland, G. J., 1993: Ready reckoner. Global Guide to Tropical Cyclone Forecasting, World Meteorological Organization, WMO/TC 560, Report TCP-31. [Available online at http:// www.bom.gov/au/bmrc/pubs/tcgnide/globa_guide_ intro.htm.] ——, 1997: The maximum potential intensity of tropical cyclones. J. Atmos. Sci., 54, 2519–2541. Jones, P. D., D. E. Parker, T. J. Osborn, and K. R. Briffa, 2006: Global and hemispheric temperature anomalies—Land and marine instrumental records. Trends: A Compendium of Data on Global Change, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy. [Available online at http://cdiac.ornl.gov/ trends/temp/jonescru/jones.html.] 15 OCTOBER 2008 GUALDI ET AL. 5227 Knutson, T. R., and S. Manabe, 1995: Time–mean response over the tropical Pacific to increased CO2 in a coupled ocean– atmosphere model. J. Climate, 8, 2181–2199. ——, and R. E. Tuleya, 2004: Impact of CO2 induced warming on simulated hurricane intensity and precipitation: Sensitivity to the choice of climate model and convective parameterization. J. Climate, 17, 3477–3495. ——, and ——, 2005: Reply. J. Climate, 18, 5183–5187. ——, ——, W. Shen, and I. Ginis, 2001: Impact of CO2–induced warming on hurricane intensities simulated in a hurricane model with ocean coupling. J. Climate, 14, 2458–2468. Landsea, C. W., 2007: Counting Atlantic tropical cyclones back to 1900. Eos, Trans. Amer. Geophys. Union, 88, 197–202. ——, B. A. Harper, K. Hoarau, and J. Knaff, 2006: Can we detect trends in extreme tropical cyclones? Science, 313, 452–454. Latif, M., N. Keenlyside, and J. Bader, 2007: Tropical sea surface temperature, vertical wind shear, and hurricane development. Geophys. Res. Lett., 34, L01710, doi:10.1029/2006GL027969. Luo, J.-J., S. Masson, S. Behera, P. Delecluse, S. Gualdi, A. Navarra, and T. Yamagata, 2003: South Pacific origin of the decadal ENSO-like variation as simulated by a coupled GCM. Geophys. Res. Lett., 30, 2250, doi:10.1029/2003GL018649. Madec, G., P. Delecluse, M. Imbard, and C. Levy, 1998: OPA 8.1 Ocean General Circulation Model reference manual. Institut Pierre-Simon Laplace Internal Rep. 11, 91 pp. Masson, S., and Coauthors, 2005: Impact of barrier layer on winter- spring variability of the southeastern Arabian Sea. Geophys. Res. Lett., 32, L07703, doi:10.1029/2004GL021980. McDonald, R. E., D. G. Bleaken, D. R. Cresswell, V. D. Pope, and C. A. Senior, 2005: Tropical storms: Representation and diagnosis in climate models and impacts of climate change. Climate Dyn., 25, 19–36. Michaels, P. J., P. C. Knappenberger, and C. Landsea, 2005: Comments on “Impacts of CO2–induced warming on simulated hurricane intensity and precipitation: Sensitivity to the choice of climate model and convective scheme.” J. Climate, 18, 5179–5182. Morcrette, J. J., 1991: Radiation and cloud radiative properties in the European Centre for Medium Range Weather Forecasts forecasting system. J. Geophys. Res., 96, 9121–9132. Nolan, D. S., E. D. Rappin, and K. A. Emanuel, 2007: Tropical cyclogenesis sensitivity to environmental parameters in radiative- convective equilibrium. Quart. J. Roy. Meteor. Soc., 133, 2085–2107. Nordeng, T. E., 1994: Extended versions of the convective parameterization scheme at ECMWF and their impact on the mean and transient activity of the model in the Tropics. ECMWF Research Department Tech. Memo. 206, 41 pp. Oouchi, K., J. Yoshimura, H. Yoshimura, R. Mizuta, S. Kusunoki, and N. A. Noda, 2006: Tropical cyclone climatology in a global- warming climate as simulated in a 20 km-mesh global atmospheric model: Frequency and wind intensity analyses. J. Meteor. Soc. Japan, 84, 259–276. Palmen, E., 1948: On the formation and structure of tropical hurricanes. Geophysica, 3, 26–39. Pezza, A. B., and I. Simmonds, 2005: The first South Atlantic hurricane: Unprecedented blocking, low shear and climate change. Geophys. Res. Lett., 32, L15712, doi:10.1029/2005GL023390. Pielke, R., Jr., C. Landsea, M. Mayfield, J. Laver, and R. Pasch, 2005: Hurricanes and global warming. Bull. Amer. Meteor. Soc., 86, 1571–1575. ——,——,——,——, and——, 2006: Reply. Bull. Amer. Meteor. Soc., 87, 628–631. Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670. Roeckner, E., and Coauthors, 1996: The atmospheric general circulation model Echam-4: Model description and simulation of present-day climate. Max-Planck-Institut für Meteorologie Rep. 218, 90 pp. Roullet, G., and G. Madec, 2000: Salt conservation, free surface, and varying levels: A new formulation for ocean general circulation models. J. Geophys. Res., 105, 23 927–23 942. Royer, J.-F., F. Chauvin, B. Timbal, P. Araspin, and D. Grimal, 1998: A GCM study of the impact of greenhouse gas increase on the frequency of occurrence of tropical cyclones. Climate Dyn., 38, 307–343. Stevens, B., 2005: Atmospheric moist convection. Annu. Rev. Earth Planet. Sci., 33, 605–643. Sugi, M., and J. Yoshimura, 2004: A mechanism of tropical precipitation change due to CO2 increase. J. Climate, 17, 238– 243. ——, A. Noda, and N. Sato, 2002: Influence of global warming on tropical cyclone climatology: An experiment with the JMA global model. J. Meteor. Soc. Japan, 80, 249–272. Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large–scale models. Mon. Wea. Rev., 117, 1779–1800. Timmermann, R., H. Goosse, G. Madec, T. Fichefet, C. Ethe, and V. Dulie’re, 2005: On the representation of high latitude processes in the ORCALIM global coupled sea ice-ocean model. Ocean Modell., 8, 175–201. Trenberth, K., 2005: Uncertainty in hurricanes and global warming. Science, 308, 1753–1754. Valcke, S., L. Terray, and A. Piacentini, 2000: The OASIS coupler user guide version 2.4. CERFACS Tech. Rep. TR/CMGC/ 00-10, 85 pp. Vecchi, G. A., and B. J. Soden, 2007a: Global warming and the weakening of the tropical circulation. J. Climate, 20, 4316– 4340. ——, and ——, 2007b: Increased tropical Atlantic wind shear in model projections of global warming. Geophys. Res. Lett., 34, L08702, doi:10.1029/2006GL028905. Walsh, K. J. E., 1997: Objective detection of tropical cyclones in high-resolution analyses. Mon. Wea. Rev., 125, 1767–1779. ——, 2004: Tropical cyclones and climate change: Unresolved issues. Climate Res., 22, 77–83. ——, and B. F. Ryan, 2000: Tropical cyclone intensity increase near Australia as a result of climate change. J. Climate, 13, 3029–3036. Webster, P. J., G. J. Holland, J. A. Curry, and H.-R. Chang, 2005: Changes in tropical cyclones number, duration and intensity in a warming environment. Science, 309, 1844–1846. Willoughby, H. E., J. A. Clos, and M. G. Shoreibah, 1982: Concentric eye walls, secondary wind maxima, and the evolution of the hurricane vortex. J. Atmos. Sci., 39, 395–411. Xie, P., and P. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 2539–2558. Yoshimura, J., M. Sigu, and A. Noda, 2006: Influence of greenhouse warming on tropical cyclone frequency. J. Meteor. Soc. Japan, 84, 405–428.en
dc.description.obiettivoSpecifico3.7. Dinamica del clima e dell'oceanoen
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorGualdi, S.en
dc.contributor.authorScoccimarro, E.en
dc.contributor.authorNavarra, A.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia-
crisitem.author.deptCMCC, Italy-
crisitem.author.orcid0000-0001-7777-8935-
crisitem.author.orcid0000-0001-7987-4744-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent01. Atmosphere-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
i1520-0442-21-20-5204.pdfMain Article5.49 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 50

142
checked on Feb 10, 2021

Page view(s)

159
checked on Apr 24, 2024

Download(s)

29
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric