Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/4098
DC FieldValueLanguage
dc.contributor.authorallCrone, A. J.; U.S. Geological Survey, MS 966, P.O. Box 25046, Denver, Colorado 80225, USAen
dc.contributor.authorallDe Martini, P. M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallMachette, M. N.; U.S. Geological Survey, MS 966, P.O. Box 25046, Denver, Colorado 80225, USAen
dc.contributor.authorallOkumura, K.; Department of Geography, Hiroshima University, Higashi-Hiroshima, 739, Japanen
dc.contributor.authorallPrescott, J. R.; Department of Physics and Mathematical Physics, University of Adelaide, Adelaide, South Australia 5005en
dc.date.accessioned2008-10-01T13:35:44Zen
dc.date.available2008-10-01T13:35:44Zen
dc.date.issued2003-10en
dc.identifier.urihttp://hdl.handle.net/2122/4098en
dc.description.abstractPaleoseismic studies of two historically aseismic Quaternary faults in Australia confirm that cratonic faults in stable continental regions (SCR) typically have a long-term behavior characterized by episodes of activity separated by quiescent intervals of at least 10,000 and commonly 100,000 years or more. Studies of the approximately 30-km-long Roopena fault in South Australia and the approximately 30-km-long Hyden fault in Western Australia document multiple Quaternary surface-faulting events that are unevenly spaced in time. The episodic clustering of events on cratonic SCR faults may be related to temporal fluctuations of fault-zone fluid pore pressures in a volume of strained crust. The long-term slip rate on cratonic SCR faults is extremely low, so the geomorphic expression of many cratonic SCR faults is subtle, and scarps may be difficult to detect because they are poorly preserved. Both the Roopena and Hyden faults are in areas of limited or no significant seismicity; these and other faults that we have studied indicate that many potentially hazardous SCR faults cannot be recognized solely on the basis of instrumental data or historical earthquakes. Although cratonic SCR faults may appear to be nonhazardous because they have been historically aseismic, those that are favorably oriented for movement in the current stress field can and have produced unexpected damaging earthquakes. Paleoseismic studies of modern and prehistoric SCR faulting events provide the basis for understanding of the long-term behavior of these faults and ultimately contribute to better seismic-hazard assessments.en
dc.language.isoEnglishen
dc.publisher.nameSeismological Society of Americaen
dc.relation.ispartofBulletin of the Seismological Society of Americaen
dc.relation.ispartofseries5 / 93 (2003)en
dc.subjectpalaeoseismologyen
dc.subjectAustraliaen
dc.subjectfault behavioren
dc.subjectstable continental regionsen
dc.titlePaleoseismicity of Two Historically Quiescent Faults in Australia: Implications for Fault Behavior in Stable Continental Regionsen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber1913-1934en
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismologyen
dc.relation.referencesAdams, J., J. A. Percival, R. J. Wetmiller, J. A. Drysdale, and P. B. Robertson (1992). Geological controls on the 1989 Ungava surface rupture— A preliminary interpretation, Geol. Surv. of Canada Paper 92- C, 147–155. Adams, J., R. J. Wetmiller, H. S. Hasegawa, and J. Drysdale (1991). The first surface faulting from a historical earthquake in North America, Nature, 352, 617–619. Aitken, M. J. (1985). Luminescence Dating, Academic, London. Aitken, M. J. (1998). Introduction to Optical Dating: The Dating of Quaternary Sediments by the Use of Photon-Stimulated Luminescence, Oxford Univ. Press, New York. Bates, D. A. (1941). Geological effects of the [Accra] earthquake, Gold Coast Geol. Surv. Bull. 13, 18–41. Bierman, P. R., and M. Caffee (2002). Cosmogenic exposure and erosion history of Australian bedrock landforms, Geol. Soc. Am. Bull. 114, 787–803. Bierman, P. R., and J. Turner (1995). 01Be and 62Al evidence for exceptionally low rates of Australian bedrock erosion and the likely existence of pre-Pleistocene landscapes, Quat. Res. 44, 378–382. Birkeland, P. W. (1999). Soils and Geomorphology, Oxford Univ. Press, New York. Blanpied, M. L., D. A. Lockner, and J. D. Byerlee (1992). An earthquake mechanism based on rapid sealing of faults, Nature, 358, 574–576. Bucknam, R. C., and R. E. Anderson (1979). Estimation of fault-scarp ages from a scarp-height-slope-angle relationship, Geology 7, 11–14. Camelbeeck, T., and M. Meghraoui (1998). Geological and geophysical evidence for large palaeo-earthquakes with surface faulting in the Roer Graben (northwest Europe), Geophys. J. Int. 132, 347–362. Chin, R. J., A. H. Hickman, and R. Thom (1984). Hyden geological map, Geol. Surv. West. Aust., 1:250,000-scale Geological Series Sheet SI 50–4. Choy, G. L., and J. R. Bowman (1990). Rupture process of a multiple main shock sequence: analysis of teleseismic, local, and field observations of the Tennant Creek, Australia, earthquakes of January 22, 1988, J. Geophys. Res. 95, 6867–6882. Coblentz, D. D., and R. M. Richardson (1995). Statistical trends in the intraplate stress field, J. Geophys. Res. 100, 20,245–20,255. Coblentz, D. D., S. Zhou, R. R. Hillis, R. M. Richardson, and M. Sandiford (1998). Topography, boundary forces, and the Indo-Australian intraplate stress field, J. Geophys. Res. 103, 919–931. Crone, A. J., and K. V. Luza (1990). Style and timing of Holocene surface faulting on the Meers fault, southwestern Oklahoma, Geol. Soc. Am. Bull. 102, 1–17. Crone, A. J., M. N. Machette, and J. R. Bowman (1992). Geologic investigations of the 1988 Tennant Creek, Australia, earthquakes: implications for paleoseismicity in stable continental regions, U.S. Geol. Surv. Bull. 2032-A. Crone, A. J., M. N. Machette, and J. R. Bowman (1997a). Episodic nature of earthquake activity in stable continental regions revealed by paleoseismicity studies of Australian and North American Quaternary faults, Aust. J. Earth Sci. 44, 203–214. Crone, A. J., M. N. Machette, L.-A. Bradley, and S. A. Mahan (1997b). Late Quaternary surface faulting on the Cheraw fault, southeastern Colorado, U.S. Geol. Surv. Geol. Invest. Map I-2591. Dalgarno, C. R., J. E. Johnson, B. G. Forbes, and B. P. Thompson (1968). Port Augusta Geological Map, S.A. Geological Atlas Series Sheet SI 53-4 Zone 5, Geol. Surv. South Aust., scale 1:250,000. Denham, D. (1988). Australian seismicity: the puzzle of the not-so-stable continent, Seism. Res. Lett. 59, 235–240. Dorbath, C., L. Dorbath, R. Gaulon, T. George, P. Mourgue, M. Ramdani, B. Robineau, and B. Tadili (1984). Seismotectonics of the Guinean earthquake of December 22, 1983, Geophys. Res. Lett. 11, 971–974. Dunham, M. N. E. (1992). The geomorphological nature and age of the linear escarpments of northeastern Eyre Peninsula, Honours Degree Thesis, University of Adelaide, Adelaide, South Australia, 43 p. Ellis, M., J. Gomberg, and E. Schweig (2001). Indian earthquake may serve as analog for New Madrid earthquakes, EOS 82, no. 32, 345, 350. Everingham, I. B. (1968). Seismicity of Western Australia Aust. Bur. Min. Res., Geol. & Geophys. Rept. 132. FEMA (Federal Emergency Management Agency) (1985). An assessment of damage and casualties for six cities in the central United States resulting from earthquakes in the New Madrid seismic zone, Federal Emergency Management Agency, Central United States Earthquake Preparedness Project, contract EMK-C-0057. Goes, S. D. B. (1996). Irregular recurrence of large earthquakes—An analysis of historic and paleoseismic catalogs, J. Geophys. Res. 101, 5739–5749. Gordon, F. R., and J. D. Lewis (1980). The Meckering and Calingiri earthquakes October 1968 and March 1970, Geol. Surv. West. Aust. Bull. 126. Goudie, A. (1973) Duricrusts in Tropical and Subtropical Landscapes, Clarendon Press, Oxford, 174 p. Gupta, H. K., B. K. Rastogi, I. Mohan, C. V. R. K. Rao, S. V. S. Sarma, and R. U. M. Rao (1998). An investigation into the Latur earthquake of September 29, 1993 in southern India, Tectonophysics 287, 299– 313. Hacker, B. R. (1997). Diagenesis and fault valve seismicity of crustal faults, J. Geophys. Res. 102, 24459–24467. Hanks, T. C., and A. C. Johnston (1992). Common features of the excitation and propagation of strong ground motion for North American earthquakes, Seism. Soc. Am. Bull. 82, 1–23. Hickman, S., R. Sibson, and R. Bruhn (1995). Introduction to special section: mechanical involvement of fluids in faulting, J. Geophys. Res. 100, 12,831–12,840. Johnston, A. C. (1989). The seismicity of ‘stable continental interiors’, in Earthquakes at North-Atlantic Passive Margins: Neotectonics and Postglacial Rebound, S. Gregersen and P. W. Basham, (Editors), Kluwer Academic Publishers, Dordrecht, The Netherlands, 299–327. Johnston, A. C., K. J. Coppersmith, L. R. Kanter, and C. A. Cornell (1994). The earthquakes of stable continental regions, Electric Power Res. Institute Rept., TR-102261-V1, Palo Alto, California. Kenner, S. J., and P. Segall (2000). A mechanical model for intraplate earthquakes: application to the New Madrid seismic zone, Science 289, 2329–2332. Langer, C. J., M. G. Bonilla, and G. A. Bollinger (1987). Aftershocks and surface faulting associated with the intraplate Guinea, West Africa, earthquake of 22 December 1983, Seism. Soc. Am. Bull. 77, 1579– 1601. Lewis, J. D., N. A. Daetwyler, J. A. Bunting, and J. S. Moncrieff (1981). The Cadoux earthquake, 2 June 1979, Geol. Surv. West. Aust. Rept. 11. Machette, M. N. (1985). Calcic soils of the southwestern United States, Geol. Soc. Am., Spec. Paper 203. Machette, M. N. (1998). Contrasts between short-and long-term record of seismicity in the Rio Grande Rift—Important implications for seismic hazard assessments in area of slow extension, Utah Geol. Surv. Misc. Pub. 98-2, 84–95. Machette, M. N., A. J. Crone, and J. R. Bowman (1993). Geologic investigations of the 1986 Marryat Creek, Australia, earthquakes: implications for paleoseismicity in stable continental regions, U.S. Geol. Surv. Bull. 2032-B. Marco, S., M. Stein, and A. Agnon (1996). Long-term earthquake clustering— A 50,000-year paleoseismic record in the Dead Sea Graben, J. Geophys. Res. 101, 6179–6191. McCue, K. (1990). Australia’s large earthquakes and Recent fault scarps, J. Struct. Geol. 12, 761–766. McCue, K., B. C. Barlow, D. Denham, T. Jones, G. Gibson, and M. Michael- Leiba (1987). Another chip off the old Australian block, EOS, 68, 609, 612. Miles, K. R. (1954). The geology and iron ore resources of the Middleback Range area, Geol. Surv. of South Aust. Bull. 33, 1–247. Myers, J. S. (1990). Precambrian tectonic evolution of part of Gondwana, southwestern Australia, Geology 18, 537–540. Nambi, K. S. V., and M. J. Aitken (1986). Annual dose conversion factors for TL and ESR dating, Archaeometry 28, 202–205. Oldham, R. D. (1926). The Cutch (Kachh) earthquake of 16th June 1819 with a revision of the great earthquake of 12th June 1897, Geol. Surv. India Memoir XLVI, 1–77. Plumb, K. A. (1979). The tectonic evolution of Australia, Earth-Sci. Rev. 14, 205–249. Prescott, J. R., and J. T. Hutton (1994). Cosmic ray contributions to dose rate for luminescence and ESR dating: large depths and long-term variations, Radiat. Meas. 23, 497–500. Prescott, J. R., and J. T. Hutton (1995). Environmental dose rates and radioactive disequilibrium from some Australian luminescence dating sites, Quat. Sci. Rev. (Quaternary Geochronology) 14, 439–448. Prescott, J. R., and G. B. Robertson (1997). Sediment dating by luminescence: a review Radiat. Meas. 27, 893–922. Prescott, J. R., D. J. Huntley, and J. T. Hutton (1993). Estimation of equivalent dose in luminescence dating: the Australian slide method, Ancient TL 11, 1–5. Quittmeyer, R. C., and K. H. Jacob (1979). Historical and modern seismicity of Pakistan, Afghanistan, northwestern India, and southeastern Iran, Seism. Soc. Am. Bull. 69, 773–823. Qureshi, I. R., and A. A. Sadig (1967). Earthquakes and associated faulting in central Sudan, Nature 215, 263–265. Rajendran, C. P., K. Rajendran, and B. John (1996). The 1993 Killari (Latur), central India, earthquake: an example of fault reactivation in Precambrian crust, Geology 24, 651–654. Rajendran, C. P., and K. Rajendran (1999). Geological investigations at Killari and Ter, central India and implications for paleoseismicity in the shield region, Tectonophysics, 308, 67–81. Sibson, R. H. (1992). Implications of fault-valve behaviour for rupture nucleation and recurrence, Tectonophysics 211, 283–293. Sieh, K., M. Stuiver, and D. Brillinger (1989). A more precise chronology of earthquakes produced by the San Andreas fault in southern California, J. Geophys. Res. 94, 603–623. Sleep, N. H. (1995). Ductile creep, compaction, and rate and state dependent friction within major fault zones, J. Geophys. Res. 100, 13,065– 13,080. Sleep, N. H., and M. L. Blanpied (1992). Creep, compaction, and the weak rheology of major faults, Nature 359, 687–692. Spooner, N. A. (1994). The anomalous fading of infra-red stimulated luminescence from feldspars, Radiat. Meas. 23, 625–632. Swan, F. H. (1988). Temporal clustering of paleoseismic events on the Oued Fodda fault, Algeria, Geology 16, 1092-1095. Tsutsumi, H., and A. Okada (1996). Segmentation and Holocene surface faulting on the Median Tectonic Line, southwest Japan, J. Geophys. Res. 101, 5855–5871. Twidale, C. R. (1983). Australian laterites and silcretes—Ages and significance, Rev. Geol. Dyn. Geograph. Phys. 24, 35–45. Twidale, C. R. (1997). Comment on “01Be and 62Al evidence for exceptionally low rates of Australian bedrock erosion and the likely existence of pre-Pleistocene landscapes” (Bierman and Turner, 1995), Quat. Res. 48, 381–385. Twidale, C. R., and J. A. Bourne (1975). Episodic exposure of inselbergs, Geol. Soc. Am. Bull. 86, 1473–1481. Vanneste, K., M. Meghraoui, and T. Camelbeeck (1999). Late Quaternary earthquake-related soft-sediment deformation along the Belgian portion of the Feldbiss fault, lower Rhine graben system, Tectonophysics 309, 57–79. Van Dissen, R., K. McCue, G. Gibson, V. Jensen, M. Somerville, B. Boreham, B. McKavanagh, and A. Goede (1997). The Lake Edgar fault: evidence for repeated Quaternary displacement on an active fault in southwestern Tasmania, in Earthquakes in Australian Cities, Proceedings, Australian Earthquake Engineering Society, Univ. of Queensland, Brisbane, 5-1 to 5-4. Yarwood, D. R., and D. I. Doser (1990). Deflection of oceanic transform motion at a continental margin as deduced from waveform inversion of the 1939 Accra, Ghana earthquake, Tectonophysics 172, 341–349. Zoback, M. L. (1992). First- and second-order patterns of stress in the lithosphere: the World stress map project, J. Geophys. Res. 97, 11,703–11,728. Zoback, M. L., and M. D. Zoback (1992). Episodic release of high pore pressure, an explanation of rapid short-term rates of intraplate seismicity, EOS Suppl. 73, 307.en
dc.description.obiettivoSpecifico3.2. Tettonica attivaen
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorCrone, A. J.en
dc.contributor.authorDe Martini, P. M.en
dc.contributor.authorMachette, M. N.en
dc.contributor.authorOkumura, K.en
dc.contributor.authorPrescott, J. R.en
dc.contributor.departmentU.S. Geological Survey, MS 966, P.O. Box 25046, Denver, Colorado 80225, USAen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentU.S. Geological Survey, MS 966, P.O. Box 25046, Denver, Colorado 80225, USAen
dc.contributor.departmentDepartment of Geography, Hiroshima University, Higashi-Hiroshima, 739, Japanen
dc.contributor.departmentDepartment of Physics and Mathematical Physics, University of Adelaide, Adelaide, South Australia 5005en
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptState of Alaska, Department of Natural Resources, Fairbanks, Alaska-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptU.S. Geological Survey, Denver, CO, USA-
crisitem.author.deptDepartment of Physics and Mathematical Physics, University of Adelaide, Adelaide, South Australia 5005-
crisitem.author.orcid0000-0002-3598-5191-
crisitem.author.orcid0000-0001-7964-6290-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
BSSA_Crone_2003.pdfmain article5.68 MBAdobe PDF
Show simple item record

Page view(s) 50

178
checked on Apr 24, 2024

Download(s)

31
checked on Apr 24, 2024

Google ScholarTM

Check