Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/3853
DC FieldValueLanguage
dc.contributor.authorallEtiope, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallLassey, K. R.; National Institute of Water and Atmospheric Research, Wellington, New Zealanden
dc.contributor.authorallKlusman, R. W.; Department of Chemistry and Geochemistry, Colorado School of Mines, Golden, Colorado, USAen
dc.contributor.authorallBoschi, E.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione AC, Roma, Italiaen
dc.date.accessioned2008-05-14T06:32:56Zen
dc.date.available2008-05-14T06:32:56Zen
dc.date.issued2008-05en
dc.identifier.urihttp://hdl.handle.net/2122/3853en
dc.description.abstractConverging evidence from new top-down and bottomup estimates of fossil "radiocarbon-free" methane emissions indicates that natural geologic sources account for a substantial component of the atmospheric methane budget. Comparing emission estimates based on atmospheric 14CH4 ("radiomethane") with geologic emissions from seepage, including terrestrial macroseeps, microseepage, marine seeps, and geothermal/volcanic emissions from the Earth’s crust, shows that such "geo-CH4" sources can be conservatively estimated at 53 ± 11 Tg yr 1 globally. This makes geo-CH4 second in importance to wetlands as a natural methane source. Such a new appraisal can easily be accommodated within the uncertainty of the global methane budget as recently compiled, and recognizes the importance of geophysical out-gassing of methane generated within the lithosphere. We propose a new coherent contemporary budget in which 30 ± 5% (based on atmospheric radiomethane measurements) of the global source of 582 ± 87 Tg yr 1 has fossil origin, both natural and anthropogenic.en
dc.language.isoEnglishen
dc.publisher.nameAGUen
dc.relation.ispartofGeophysical Research Lettersen
dc.relation.ispartofseries/ 35 (2008)en
dc.subjectmethaneen
dc.subjectgreenhouse-gasen
dc.subjectlithosphere degassingen
dc.titleReappraisal of the fossil methane budget and related emission from geologic sourcesen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumberL09307en
dc.identifier.URLhttp://www.agu.org/pubs/crossref/2008/2008GL033623.shtmlen
dc.subject.INGV03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gasesen
dc.identifier.doi10.1029/2008GL033623en
dc.relation.referencesClarke, R. H., and R. W. Cleverly (1991), Leakage and post-accumulation migration, in Petroleum Migration, edited by W. A. England and A. J. Fleet, Geol. Soc. Spec. Publ., 59, 265– 271. Denman, K. L., et al. (2007), Couplings between changes in the climate system and biogeochemistry, in Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by S. Solomon et al., chap. 7, pp. 499 – 587, Cambridge Univ. Press, Cambridge, U.K. Dimitrov, L. (2002), Mud volcanoes—The most important pathway for degassing deeply buried sediments, Earth Sci. Rev., 59, 49–76. Etiope, G. (2004), GEM—Geologic emissions of methane, the missing source in the atmospheric methane budget, Atmos. Environ., 38, 3099– 3100. Etiope, G. (2008), Natural emissions of methane from geological sources in Europe, Atmos. Environ., doi:10.1016/j.atmosenv.2008.03.014, in press. Etiope, G., and R. W. Klusman (2002), Geologic emissions of methane to the atmosphere, Chemosphere, 49, 777– 789. Etiope, G., and R. W. Klusman (2008), Microseepage in drylands: Flux and implications in the global atmospheric source/sink budget of methane, Global Planet. Change, in press. Etiope, G., and A. V. Milkov (2004), A new estimate of global methane flux from onshore and shallow submarine mud volcanoes to the atmosphere, Environ. Geol., 46, 997–1002. Etiope, G., A. Feyzullayev, C. L. Baciu, and A. V. Milkov (2004), Methane emission from mud volcanoes in eastern Azerbaijan, Geology, 32, 465– 468. Etiope, G., G. Papatheodorou, D. Christodoulou, G. Ferentinos, E. Sokos, and P. Favali (2006), Methane and hydrogen sulfide seepage in the NW Peloponnesus petroliferous basin (Greece): Origin and geohazard, AAPG Bull., 90, 701– 713. Etiope, G., G. Martinelli, A. Caracausi, and F. Italiano (2007a), Methane seeps and mud volcanoes in Italy: Gas origin, fractionation and emission to the atmosphere, Geophys. Res. Lett., 34, L14303, doi:10.1029/ 2007GL030341. Etiope, G., T. Fridriksson, F. Italiano, W. Winiwarter, and J. Theloke (2007b), Natural emissions of methane from geothermal and volcanic sources in Europe, J. Volcanol. Geotherm. Res., 165, 76 – 86, doi:10.1016/j.jvolgeores.2007.04.014. Etiope, G., A. V. Milkov, and E. Derbyshire (2008), Did geologic emissions of methane play any role in Quaternary climate change?, Global Planet. Change, 61, 79–88, doi:10.1016/j.gloplacha.2007.08.008. European Environment Agency (2004), Joint EMEP/CORINAIR Atmospheric Emission Inventory Guidebook, 4th ed., Copenhagen. (Available at http://reports.eea.eu.int/EMEPCORINAIR4/en.) Hong, W. L., and T .F. Yang (2007), Methane flux from accretionary prism through mud volcano area in Taiwan: From present to the past, paper presented at 9th International Conference on Gas Geochemistry, Natl. Taiwan Univ., Taipei, Taiwan. Hornafius, J. S., D. Quigley, and B. P. Luyendyk (1999), The world’s most spectacular marine hydrocarbon seeps (Coal Oil Point, Santa Barbara Channel, California): Quantification of emissions, J. Geophys. Res., 104, 20703– 20711. Houweling, S., F. Dentener, and J. Lelieveld (2000), Simulation of preindustrial methane to constrain the global source strength of natural wetlands, J. Geophys. Res., 105, 17243–17255. Judd, A. G. (2004), Natural seabed seeps as sources of atmospheric methane, Environ. Geol., 46, 988– 996. Klusman, R. W., M. E. Jakel, and M. P. LeRoy (1998), Does microseepage of methane and light hydrocarbons contribute to the atmospheric budget of methane and to global climate change?, Assoc. Pet. Geochem. Explor. Bull., 11, 1– 55. Kvenvolden, K. A., and B. W. Rogers (2005), Gaia’s breath—Global methane exhalations, Mar. Pet. Geol., 22, 579– 590. Kvenvolden, K. A., T. D. Lorenson, and W. Reeburgh (2001), Attention turns to naturally occurring methane seepage, Eos Trans. AGU, 82, 457, 2001. Lacroix, A. V. (1993), Unaccounted-for sources of fossil and isotopically enriched methane and their contribution to the emissions inventory: A review and synthesis, Chemosphere, 26, 507– 557. Lassey, K. R., D. C. Lowe, and A. M. Smith (2007), The atmospheric cycling of radiomethane and the ‘‘fossil fraction’’ of the methane source, Atmos. Chem. Phys., 7, 2141– 2149. Lelieveld, J., P. J. Crutzen, and F. J. Dentener (1998), Changing concentration, lifetime and climate forcing of atmospheric methane, Tellus, Ser. B, 50, 128– 150. Mellors, R., D. Kilb, A. Aliyev, A. Gasanov, and G. Yetirmishli (2007), Correlations between earthquakes and large mud volcano eruptions, J. Geophys. Res., 112, B04304, doi:10.1029/2006JB004489. Milkov, A. V., R. Sassen, T. V. Apanasovich, and F. G. Dadashev (2003), Global gas flux from mud volcanoes: A significant source of fossil methane in the atmosphere and the ocean, Geophys. Res. Lett., 30(2), 1037, doi:10.1029/2002GL016358. Mo¨rner, N.-A., and G. Etiope (2002), Carbon degassing from the lithosphere, Global Planet. Change, 33, 185– 203. Prather, M., et al. (2001) Atmospheric chemistry and greenhouse gases, in Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, edited by J. T. Houghton et al., pp. 239–287, Cambridge Univ. Press, Cambridge, U.K. Quay, P., J. Stutsman, D. Wilbur, A. Snover, E. Dlugokencky, and T. Brown (1999), The isotopic composition of atmospheric methane, Global Biogeochem. Cycles, 13, 445– 461. Ryan, S., E. J. Dlugokencky, P. P. Tans, and M. E. Trudeau (2006), Mauna Loa volcano is not a methane source: Implications for Mars, Geophys. Res. Lett., 33, L12301, doi:10.1029/2006GL026223. Schimel, D., et al. (1996), Radiative forcing of climate change, in Climate Change 1995: The Science of Climate Change, edited by J. T. Houghton et al., pp. 65– 131, Cambridge Univ. Press, Cambridge, U.K.en
dc.description.obiettivoSpecifico3.8. Geofisica per l'ambienteen
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorEtiope, G.en
dc.contributor.authorLassey, K. R.en
dc.contributor.authorKlusman, R. W.en
dc.contributor.authorBoschi, E.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentNational Institute of Water and Atmospheric Research, Wellington, New Zealanden
dc.contributor.departmentDepartment of Chemistry and Geochemistry, Colorado School of Mines, Golden, Colorado, USAen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione AC, Roma, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptNational Institute of Water and Atmospheric Research, Wellington, New Zealand-
crisitem.author.deptDept. of Chemistry and Geochemistry, Colorado School of Mines, Golden, Co., 80401, United States-
crisitem.author.orcid0000-0001-8614-4221-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent03. Hydrosphere-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Et-Las-Klu-Bos-GRL-fossil.pdf165.63 kBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 10

147
checked on Feb 10, 2021

Page view(s)

129
checked on Apr 24, 2024

Download(s) 50

68
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric