Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/2957
DC FieldValueLanguage
dc.contributor.authorallSavov, I. P.; Department of Terrestrial Magnetism, Carnegie Institution ofen
dc.contributor.authorallRyan, J. G.; Geology Department, University of South Florida, Tampa, Florida,en
dc.contributor.authorallD’Antonio, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallFryer, P.; Hawaii Institute of Geophysics and Planetology, University of Hawaiien
dc.date.accessioned2007-12-06T08:01:17Zen
dc.date.available2007-12-06T08:01:17Zen
dc.date.issued2007-09-27en
dc.identifier.urihttp://hdl.handle.net/2122/2957en
dc.description.abstractShallow slab devolatilization is not only witnessed through fluid expulsion at accretionary prisms, but is also evidenced by active serpentinite seamounts in the shallow fore-arc region of the Mariana convergent margin. Ocean Drilling Program (ODP) Leg 195 recovered serpentinized peridotites that present a unique opportunity to study the products of shallow level exchanges between the upper mantle and slab-derived fluids. Similar to samples recovered during ODP Leg 125, the protoliths of these fore-arc serpentinized peridotites are mantle harzburgites that have suffered large volume melt extraction (up to 25%) prior to interactions with fluids released from the downgoing Pacific Plate. Samples recovered from both ODP legs 125 and 195 show U-shaped rare earth element (REE) patterns and very low REE abundances (0.001–0.1 chondrites). Relative to global depleted mantle values these rocks typically have 1–2 orders of magnitude lower high field strength elements, REE, Th, and U contents. Interestingly, all fore-arc rocks thus far examined show extreme enrichments of fluid mobile elements (FME: B, As, Cs, Sb, Li). Because the elemental and B, Li, and Sr isotope systematics in these fore-arc serpentinites point to nonseawater-related processes, studies of elemental excesses and anomalous isotopic signatures allow assessment of how much of the subducted inventory is lost during the initial subduction process between 10 and 40 km. On the basis of similar but substantial enrichments of FME in the Mariana fore-arc samples recovered at ODP legs 125 and 195, we report large slab inventory depletions of B ( 75%), Cs ( 25%), As ( 15%), Li ( 15%), and Sb ( 8%); surprisingly low (generally less than 2%) depletions of Rb, Ba, Pb, U, Sr; and no depletions in REE and the high field strength elements (HFSE). Such slab-metasomatized mantle wedge materials may be dragged to depths of arc magma generation, as proposed by Tatsumi (1986) and Straub and Layne (2002) and thus represent an unexplored class of mantle material, different in its origins, physical properties and geochemical fingerprint from mantle rocks traditionally used in modeling a wide range of subduction zone processes.en
dc.language.isoEnglishen
dc.publisher.nameAmerican Geophysical Unionen
dc.relation.ispartofJ. Geophys. Res.en
dc.relation.ispartofseries/ 112(2007)en
dc.subjectShallow slab fluiden
dc.subjectMariana arc-basinen
dc.titleShallow slab fluid release across and along the Mariana arc-basin system: Insights from geochemistry of serpentinized peridotites from the Mariana fore arcen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumberB09205en
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.05. Mineralogy and petrologyen
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.07. Rock geochemistryen
dc.identifier.doi10.1029/2006JB004749, 2007en
dc.relation.referencesBebout, G. (1995), The impact of subduction-zone metamorphism on mantle-ocean chemical cycling, Chem. Geol., 126(2), 191– 218. Bebout, G., J. G. Ryan, W. Leeman, and A. Bebout (1999), Fractionation of trace elements by subduction-zone metamorphism-effect of convergent margin thermal evolution, Earth Planet. Sci. Lett., 171(1), 63–81. Bebout, G. E., and M. D. Barton (2002), Tectonic and metasomatic mixing in a subduction-zone melange: Insights into the geochemical evolution of the slab-mantle interface, Chem. Geol., 187, 79–106. Beccaluva, L., G. Macciotta, C. Savelli, G. Serri, and O. Zeda (1980), Geochemistry and K/Ar ages of volcanics dredged in the Philippine Sea, Mariana, Yap Palau trenches and Parece-Vela Basin, in The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands, Geophys. Monogr. Ser., vol. 23, edited by D. E. Hayes, 247–270, AGU, Washington, D. C. Benton, L. D. (1997), Origin and evolution of serpentine seamount fluids, Mariana and Izu-Bonin forearcs: Implications for the recycling of subducted material, Ph.D. dissertation, Univ. of Tulsa, Tulsa, Okla. Benton, L. D., J. G. Ryan, and F. Tera (2001), Boron isotope systematics of slab fluids as inferred from a serpentine seamount, Mariana Forearc, Earth Planet. Sci. Lett., 187, 273– 282. Benton, L. D., J. G. Ryan, and I. P. Savov (2004), Lithium abundance and isotope systematics of forearc serpentinites, Conical Seamount, Mariana forearc: Insights into the mechanics of slab-mantle exchange during subduction, Geochem. Geophys. Geosyst., 5, Q08J12, doi:10.1029/ 2004GC000708. Bloomer, S. H. (1983), Distribution and origin of igneous rocks from the landward slopes of the Mariana Trench: Implications for its structure and evolution, J. Geophys. Res., 88, 7411 –7428. Bodinier, J.-L., and M. Godard (2003), Orogenic, ophiolitic and abyssal peridotites, in Treatise on Geochemistry, vol. 2, The Mantle and Core, edited by R. W. Carson, pp. 103– 171, Elsevier, New York. Bonatti, E., J. R. Lawrence, and N. Mornadi (1984), Serpentinization of oceanic peridotites: Temperature dependence of mineralogy and boron content, Earth Planet. Sci. Lett., 70, 88– 94. Carmichael, I. S. E., R. A. Lange, and J. F. Luhr (1996), Quaternary minettes and associated lavas of Mascota, western Me´xico: A consequence of plate extension above a subduction-modified mantle wedge, Contrib. Mineral. Petrol., 124, 302–333. Class, C., D. M. Miller, S. L. Goldstein, and C. H. Langmuir (2000), Distinguishing melt and fluid subduction components in Umnak Volcanics, Aleutian Arc, Geochem. Geophys. Geosyst., 1(6), doi:10.1029/ 1999GC000010. D’Antonio, M., and M. B. Kristensen (2004), Serpentine and brucite of ultramafic clasts from the South Chamorro Seamount (Ocean Drilling Program Leg 195, Site 1200), Inferences for the serpentinization of the Mariana forearc mantle, Mineral. Mag., 68, 887– 904. Davies, H. J., and D. J. Stevenson (1992), Thermal model of subduction zone, J. Geophys. Res., 97, 2037–2070. Decitre, S., E. Deloule, L. Reisberg, R. James, P. Agrinier, and C. Me´vel (2002), Behavior of Li and its isotopes during serpentinization of oceanic peridotites, Geochem. Geophys. Geosyst., 3(1), 1007, doi:10.1029/ 2001GC000178. Defant, M. J., and M. S. Drummond (1990), Derivation of some modern arc magmas by melting of young subducted lithosphere, Nature, 347, 662– 665. Dietrich, V., R. Emmermann, R. Oberhansli, and H. Puchlet (1978), Geochemistry of basaltic and gabbroic rocks from the West Mariana Basin and the Mariana Trench, Earth Planet. Sci. Lett., 39, 127– 144. Elliot, T., T. Plank, A. Zindler, W. M. White, and B. Bourdon (1997), Element transport from subducted slab to juvenile crust at the Mariana Arc, J. Geophys. Res., 102, 14,991– 15,019. Ertan, I. E., and W. P. Leeman (1999), Fluid inclusions in mantle and lower crustal xenoliths from the Simcoe Volcanic Field, Washington, Chem. Geol., 154, 83– 95. Fryer, P. (2002), Detailed structures of the Mariana forearc serpentine mud volcanoes from side-scan sonar mapping: Implications for formation of serpentinite me´lange deposits, Eos Trans. AGU, 83(47), Fall Meet. Suppl., Abstract T72A-1230. Fryer, P., and G. J. Fryer (1987), Origins of nonvolcanic seamounts in a forearc environment, in Seamounts, Islands, and Atolls, Geophys. Monogr. Ser., vol. 43, edited by B. H. Keating et al., 61 – 69, AGU, Washington, D. C. Fryer, P. B., and M. H. Salisbury (2006), Leg 195 synthesis: Site 1200– Serpentinite seamounts of the Izu-Bonin/Mariana convergent plate margin (ODP Leg 125 and 195 drilling results), Proc. Ocean Drill. Program Sci. Results [CD-ROM], 195. Fryer, P., E. L. Ambos, and D. M. Hussong (1985), Origin and emplacement of Mariana Forearc seamounts, Geology, 13, 774– 777. Fryer, P., et al. (1992), Proceedings of the Ocean Drilling Program, Scientific Results, vol. 125, Ocean Drill. Program, College Station, Tex. Fryer, P., M. Mottl, L. Johnson, J. Haggerty, S. Phipps, and H. Maekawa (1995), Serpentine bodies in the forearcs of western Pacific convergent margins: Origin and associated fluids, in Active Margins and Marginal Basins of the Western Pacific, Geophys. Monogr. Ser., vol. 88, edited by B. Taylor and J. Natland, pp. 259–279, AGU, Washington, D. C. Fryer, P., C. Wheat, and M. Mottl (1999), Mariana blueschist mud volcanism: Implications for conditions within the subduction zone, Geology, 27, 103– 106. Fryer, P., J. Lockwood, N. Becker, C. Todd, and S. Phipps (2000), Significance of serpentine and blueschist mud volcanism in convergent margin settings, in Ophiolites and Oceanic Crust: New Insights from Field Studies and Ocean Drilling Program, edited by Y. Dilek et al., Spec. Pap. Geol. Soc. Am., 349, 35– 51. Fryer, P., J. Gharib, K. Ross, I. Savov, and M. J. Mottl (2006), Variability in serpentinite mudflow mechanisms and sources: ODP drilling results on Mariana forearc seamounts, Geochem. Geophys. Geosyst., 7, Q08014, doi:10.1029/2005GC001201. Gruau, G., J. B. Griffiths, and C. Lecuyer (1998), The origin of the Ushaped rare earth patterns in ophiolite peridotites: Assessing the role of secondary alteration and melt/rock reaction, Geochim. Cosmochim. Acta, 62, 3545– 3560. Guggino, S., I. P. Savov, J. G. Ryan, and ODP Leg 195 Scientific Party (2002), Light element systematics of metamorphic clasts from ODP Legs 125 and 195, S. Chamorro and Conical seamounts, Mariana Forearc, Eos Trans. AGU, 83(19), Spring Meet. Suppl., Abstract V51A-08. Haggerty, J. A., and S. Chaudhuri (1992), Strontium isotopic composition of the interstitial waters from Leg 125: Mariana and Bonin forearcs, Proc. Ocean Drill. Program Sci. Results, 125, 397–400. Halama, R., I. P. Savov, W. F. McDonough, R. Rudnick, and J. G. Ryan (2006), Li isotope recycling: Insights from the sub-arc mantle, Eos Trans. AGU, 87(52), Fall Meet. Suppl., Abstract V-34C-03. Hochstaedter, A., J. Gill, R. Peters, P. Broughton, P. Holden, and B. Taylor (2001), Across-arc geochemical trends in the Izu-Bonin arc: Contributions from the subducting slab, Geochem. Geophys. Geosyst., 2(7), doi:10.1029/2000GC000105. Hussong, D. M., et al. (1981), Initial Reports of the Deep Sea Drilling Project, vol. 60, U.S. Govt. Print. Off., Washington, D. C. Hyndman, R. D., and S. M. Peacock (2003), Serpentinization of the forearc mantle, Earth Planet. Sci. Lett., 85, 1 – 16. Ishii, T., P. T. Robinson, H. Maekawa, and R. Fiske (1992), Petrological studies of peridotites from diapiric serpentinite seamounts in the Izu- Ogasawara-Mariana forearc, Leg 125, Proc. Ocean Drill. Program Sci. Results., 125, 445– 487. Ishikawa, T., and E. Nakamura (1994), Origin of the slab component in arc lavas from across-arc variation of B and Pb isotopes, Nature, 370, 205– 208. B09205 SAVOV ET AL.: MARIANA FORE-ARC SERPENTINITES Ishikawa, T., and F. Tera (1999), Two isotopically distinct fluid components involved in the Mariana arc: Evidence from Nb/B ratios and B, Sr, Nd, and Pb isotope systematics, Geology, 27, 83– 86. Iwamori, H. (1998), Transportation of H2O and melting in subduction zone, Earth Planet. Sci. Lett., 160, 65– 80. Kelemen, P. B., K. Hanghoj, and A. R. Greene (2003), One view of the geochemistry of subduction-related magmatic arcs, with emphasis on primitive andesite and lower crust, in Treatise on Geochemistry, vol. 3, The Crust, edited by R. L. Rudnick, 593– 659, Elsevier, New York. Kelemen, P. B., et al. (2004), Proceedings of the Ocean Drilling Program, Initial Reports, vol. 209, 188 pp., Ocean Drill. Program, College Station, Tex. Kelley, K. A., T. Plank, J. Ludden, and H. Staudigel (2003), Composition of altered oceanic crust at ODP sites 801 and 1149, Geochem. Geophys. Geosyst., 4(6), 8910, doi:10.1029/2002GC000435. Kepezhinskas, P., M. J. Defant, and M. S. Drummond (1996), Progressive enrichment of island arc mantle by melt-peridotite interaction inferred from Kamchatka xenoliths, Geochim. Cosmochim. Acta, 60, 1217–1229. King, R. L., M. Kohn, and J. Eiler (2003), Constraints on the petrologic structure of the subduction zone slab-mantle interface from Franciscan Complex exotic ultramafic blocks, Geol. Soc. Am. Bull., 115(9), 1097– 1109. King, R. L., G. E. Bebout, T. Moriguti, and E. Nakamura (2006), Elemental mixing systematics and Sr–Nd isotope geochemistry of me´lange formation: Obstacles to identification of fluid sources to arc volcanics, Earth Planet. Sci. Lett., 246(3–4), 288–304. Leeman, W. P. (1996), Boron and other fluid-mobile elements in volcanic arc lavas: Implications for subduction processes, in Subduction Top to Bottom, Geophys. Monogr. Ser., vol. 96, edited by G. E. Bebout et al., pp. 269–276, AGU, Washington, D. C. Leeman, W. P., J. F. Lewis, R. C. Evarts, R. M. Conrey, and M. J. Streck (2005), Petrologic constraints on the thermal structure of the Cascades arc, J. Volcanol. Geotherm. Res., 140, 67–105. Lockwood, J. P. (1972), Possible mechanisms for the emplacement of alpine-type serpentinite, Mem. Geol. Soc. Am., 132, 273– 287. Luhr, J. F., and J. J. Aranda-Go´mez (1997), Mexican peridotite xenoliths and tectonic terranes: Correlations among vent location, texture, temperature, pressure, and oxygen fugacity, J. Petrol., 38, 1075–1112. Maury, R. C., M. Defant, and J.-L. Joron (1992), Metasomatism of the subarc mantle inferred from trace elements in Philippine xenoliths, Nature, 360, 661–663. Morris, J. D., and J. G. Ryan (2003), Subduction zone processes and implications for changing composition of the Upper and Lower Mantle, in Treatise on Geochemistry, vol. 2, The Mantle and Core, edited by R.W. Carson, pp. 451–471, Elsevier, New York. Mottl, M. J. (1992), Pore waters from serpentine seamounts in the Mariana and Izu –Bonin Forearcs, Leg 125: Evidence for volatiles from the subducting slab, Proc. Ocean Drill. Program Sci. Results, 125, 373–385. Mottl, M. J., S. C. Komor, P. Fryer, and C. L. Moyer (2003), Deep-slab fluids fuel extremophilic Archaea on a Mariana forearc serpentinite mud volcano: Ocean Drilling Program Leg 195, Geochem. Geophys. Geosyst., 4(11), 9009, doi:10.1029/2003GC000588. Mrosowski, C. E., D. E. Hayes, and B. Tylor (1981), Multichannel seismic reflection surveys of Leg 60 sites, Initial Rep. Deep Sea Drill. Proj., 60, 709–731. Nakamura, N. (1974), Determination of REE, Ba, Fe, Mg, Na and K in carbonaceous and ordinary chondrites, Geochim. Cosmochim. Acta, 38, 757–775. Niu, Y., and R. He´kinian (1997), Basaltic liquids and harzburgitic residues in the Garrett Transform: A case study at fast spreading ridges, Earth Planet. Sci. Lett., 146, 243–258. Noll, P. D., H. E. Newsom, W. P. Leeman, and J. G. Ryan (1996), The role of hydrothermal fluids in the production of subduction zone magmas: Evidence from siderophile and chalcophile trace elements and boron, Geochim. Cosmochim. Acta, 60, 587– 611. O’Hanley, D. (1996), Serpentinites: Records of Tectonic and Petrological History, 271 pp., Oxford Univ. Press, New York. Parkinson, I. J., and R. J. Arculus (1999), The redox state of subduction zones: Insights from arc-peridotites, Chem. Geol., 160, 409– 423. Parkinson, I. J., and J. A. Pearce (1998), Peridotites from the Izu-Bonin- Mariana forearc (ODP Leg 125), Evidence for mantle melting and meltmantle interaction in a supra-subduction zone setting, J. Petrol., 39, 1577–1618. Parkinson, I. J., J. A. Pearce, M. F. Thirlwall, K. T. M. Johnson, and G. Ingram (1992), Trace element geochemistry of peridotites from the Izu-Bonin- Mariana forearc, Leg 125, Proc. Ocean Drill. Program Sci. Results, 125, 487– 507. Parkinson, I. J., R. J. Arculus, and S. M. Eggins (2004), Peridotite xenoliths from Grenada, Lesser Antilles Island Arc, Contrib. Mineral. Petrol., 146, 241–262. Pearce, J. A., P. D. Kempton, G. M. Nowell, and S. R. Noble (1999), Hf-Nd element and isotope perspective on the nature and providence of mantle and subduction components in western Pacific arc-basin systems, J. Petrol., 40, 1579–1611. Pearce, J. A., P. F. Baker, S. J. Edwards, I. J. Parkinson, and P. T. Leat (2000), Geochemistry and tectonic significance of peridotites from the South Sandwich arc-basin system, South Atlantic, Contrib. Mineral. Petrol., 139, 36–53. Peate, D. W., and J. A. Pearce (1998), Causes of spatial compositional variations in Mariana arc lavas: Trace element evidence, Island Arc, 7, 479– 495. Plank, T., and C. H. Langmuir (1993), Tracing trace element from sediment input to volcanic output at subduction zones, Nature, 362, 739– 742. Plank, T., and C. H. Langmuir (1998), The chemical composition of subducted sediment and its consequences for the crust and mantle, Chem. Geol., 145, 325– 394. Ryan, J. G., and C. H. Langmuir (1987), The systematics of lithium abundances in young volcanic rocks, Geochim. Cosmochim. Acta, 51, 1727– 1741. Ryan, J. G., and C. H. Langmuir (1993), The systematics of boron abundances in young volcanic rocks, Geochim. Cosmochim. Acta, 57, 1489– 1498. Ryan, J. G., J. Morris, F. Tera, W. P. Leeman, and A. Tsvetkov (1995), Cross-arc geochemical variations in the Kurile Arc as a function of slab depth, Science, 270, 625– 627. Ryan, J. G., J. Morris, G. E. Bebout, and W. P. Leeman (1996), Describing chemical fluxes in subduction zones; insights from ‘depth-profiling’ studies of arc and forearc rocks, in Subduction Top to Bottom, Geophys. Monogr. Ser., vol. 96, edited by G. E. Bebout et al., pp. 263– 268, AGU, Washington, D. C. Salisbury, M. H., M. Shinohara, C. Richter, et al. (2002), Proceedings of the Ocean Drilling Program, Initial Reports [CD-ROM], vol. 195, Ocean Drilling Program, Texas A&M Univ., College Station. Salters, V. J. M., and A. Stracke (2004), Composition of the depleted mantle, Geochem. Geophys. Geosyst., 5, Q05B07, doi:10.1029/ 2003GC000597. Savov, I. P., J. G. Ryan, P. Mattie, and J. Schijf (2000), Fluid-mobile element systematics of ultramafic xenoliths from the Izu- Bonin- Mariana forearc: Implications for the chemical cycling in subduction zones, Eos Trans. AGU, 81(48), Fall Meet. Suppl., Abstract V-21C-02. Savov, I. P., J. G. Ryan, L. Chan, M. D’Antonio, M. Mottl, and P. Fryer (2002), Geochemistry of serpentinites from the S. Chamorro Seamount, ODP Leg 195, Site 1200, Mariana forearc- implications for recycling at subduction zones, Geochim. Cosmochim. Geosyst., 66, Abstract A670. Savov, I. P., S. Guggino, J. G. Ryan, P. Fryer, and M. Mottl (2005a), Geochemistry of serpentinite muds and metamorphic rocks from the Mariana forearc, ODP sites 1200 and 778– 779, South Chamorro and Conical seamounts, Proc. Ocean Drill. Program Sci. Results [Online], 195. (Available at http://www-odp.tamu.edu/publications/195_SR/103/ 103.htm) Savov, I. P., J. G. Ryan, M. D’Antonio, K. Kelley, and P. Mattie (2005b), Geochemistry of serpentinized peridotites from the Mariana Forearc Conical Seamount, ODP Leg 125: Implications for the elemental recycling at subduction zones, Geochem. Geophys. Geosyst., 6, Q04J15, doi:10.1029/ 2004GC000777. Savov, I. P., D. Rost, E. Vicenzi, and T. Zack (2006), Microscale mapping of boron and lithium in the Mariana sub-arc mantle via ToF-SIMS, Eos Trans. AGU, 87(36), Jt. Assem. Suppl., Abstract V43A-02. Scambelluri, M., O. Mu¨ntener, L. Ottolini, T. Pettke, and R. Vannucci (2004), The fate of B, Cl and Li in the subducted oceanic mantle and in the antigorite breakdown fluids, Earth Planet. Sci. Lett., 222(1), 217– 234. Schmidt, M. W., and S. Poli (1998), Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation, Earth Planet. Sci. Lett., 163, 361– 379. Schmidt, M. W., and S. Poli (2003), Generation of mobile components during subduction of oceanic crust, in Treatise on Geochemistry, vol. 3, The Crust, edited by R. L. Rudnick, pp. 567–593, Elsevier, New York. Sharma, M., and G. J. Wasserburg (1996), The neodymium isotopic compositions and rare earth patterns in highly depleted ultramafic rocks, Geochim. Cosmochim. Acta, 60, 4537–4550. Spiegelman, M., and P. B. Kelemen (2003), Extreme chemical variability as a consequence of channelized melt transport, Geochem. Geophys. Geosyst., 4(7), 1055, doi:10.1029/2002GC000336. Staudigel, H. (2003), Hydrothermal alteration processes in the oceanic crust, in Treatise on Geochemistry, vol. 3, The Crust, edited by R. L. Rudnick, pp. 511 –535, Elsevier, New York. Stern, R. J., M. J. Fouch, and S. Klemperer (2004), An overview of the Izu- Bonin Mariana subduction factory, in Inside the Subduction Factory, B09205 SAVOV ET AL.: MARIANA FORE-ARC SERPENTINITESIshikawa, T., and F. Tera (1999), Two isotopically distinct fluid components involved in the Mariana arc: Evidence from Nb/B ratios and B, Sr, Nd, and Pb isotope systematics, Geology, 27, 83– 86. Iwamori, H. (1998), Transportation of H2O and melting in subduction zone, Earth Planet. Sci. Lett., 160, 65– 80. Kelemen, P. B., K. Hanghoj, and A. R. Greene (2003), One view of the geochemistry of subduction-related magmatic arcs, with emphasis on primitive andesite and lower crust, in Treatise on Geochemistry, vol. 3, The Crust, edited by R. L. Rudnick, 593– 659, Elsevier, New York. Kelemen, P. B., et al. (2004), Proceedings of the Ocean Drilling Program, Initial Reports, vol. 209, 188 pp., Ocean Drill. Program, College Station, Tex. Kelley, K. A., T. Plank, J. Ludden, and H. Staudigel (2003), Composition of altered oceanic crust at ODP sites 801 and 1149, Geochem. Geophys. Geosyst., 4(6), 8910, doi:10.1029/2002GC000435. Kepezhinskas, P., M. J. Defant, and M. S. Drummond (1996), Progressive enrichment of island arc mantle by melt-peridotite interaction inferred from Kamchatka xenoliths, Geochim. Cosmochim. Acta, 60, 1217–1229. King, R. L., M. Kohn, and J. Eiler (2003), Constraints on the petrologic structure of the subduction zone slab-mantle interface from Franciscan Complex exotic ultramafic blocks, Geol. Soc. Am. Bull., 115(9), 1097– 1109. King, R. L., G. E. Bebout, T. Moriguti, and E. Nakamura (2006), Elemental mixing systematics and Sr–Nd isotope geochemistry of me´lange formation: Obstacles to identification of fluid sources to arc volcanics, Earth Planet. Sci. Lett., 246(3–4), 288–304. Leeman, W. P. (1996), Boron and other fluid-mobile elements in volcanic arc lavas: Implications for subduction processes, in Subduction Top to Bottom, Geophys. Monogr. Ser., vol. 96, edited by G. E. Bebout et al., pp. 269–276, AGU, Washington, D. C. Leeman, W. P., J. F. Lewis, R. C. Evarts, R. M. Conrey, and M. J. Streck (2005), Petrologic constraints on the thermal structure of the Cascades arc, J. Volcanol. Geotherm. Res., 140, 67–105. Lockwood, J. P. (1972), Possible mechanisms for the emplacement of alpine-type serpentinite, Mem. Geol. Soc. Am., 132, 273– 287. Luhr, J. F., and J. J. Aranda-Go´mez (1997), Mexican peridotite xenoliths and tectonic terranes: Correlations among vent location, texture, temperature, pressure, and oxygen fugacity, J. Petrol., 38, 1075–1112. Maury, R. C., M. Defant, and J.-L. Joron (1992), Metasomatism of the subarc mantle inferred from trace elements in Philippine xenoliths, Nature, 360, 661–663. Morris, J. D., and J. G. Ryan (2003), Subduction zone processes and implications for changing composition of the Upper and Lower Mantle, in Treatise on Geochemistry, vol. 2, The Mantle and Core, edited by R.W. Carson, pp. 451–471, Elsevier, New York. Mottl, M. J. (1992), Pore waters from serpentine seamounts in the Mariana and Izu –Bonin Forearcs, Leg 125: Evidence for volatiles from the subducting slab, Proc. Ocean Drill. Program Sci. Results, 125, 373–385. Mottl, M. J., S. C. Komor, P. Fryer, and C. L. Moyer (2003), Deep-slab fluids fuel extremophilic Archaea on a Mariana forearc serpentinite mud volcano: Ocean Drilling Program Leg 195, Geochem. Geophys. Geosyst., 4(11), 9009, doi:10.1029/2003GC000588. Mrosowski, C. E., D. E. Hayes, and B. Tylor (1981), Multichannel seismic reflection surveys of Leg 60 sites, Initial Rep. Deep Sea Drill. Proj., 60, 709–731. Nakamura, N. (1974), Determination of REE, Ba, Fe, Mg, Na and K in carbonaceous and ordinary chondrites, Geochim. Cosmochim. Acta, 38, 757–775. Niu, Y., and R. He´kinian (1997), Basaltic liquids and harzburgitic residues in the Garrett Transform: A case study at fast spreading ridges, Earth Planet. Sci. Lett., 146, 243–258. Noll, P. D., H. E. Newsom, W. P. Leeman, and J. G. Ryan (1996), The role of hydrothermal fluids in the production of subduction zone magmas: Evidence from siderophile and chalcophile trace elements and boron, Geochim. Cosmochim. Acta, 60, 587– 611. O’Hanley, D. (1996), Serpentinites: Records of Tectonic and Petrological History, 271 pp., Oxford Univ. Press, New York. Parkinson, I. J., and R. J. Arculus (1999), The redox state of subduction zones: Insights from arc-peridotites, Chem. Geol., 160, 409– 423. Parkinson, I. J., and J. A. Pearce (1998), Peridotites from the Izu-Bonin- Mariana forearc (ODP Leg 125), Evidence for mantle melting and meltmantle interaction in a supra-subduction zone setting, J. Petrol., 39, 1577–1618. Parkinson, I. J., J. A. Pearce, M. F. Thirlwall, K. T. M. Johnson, and G. Ingram (1992), Trace element geochemistry of peridotites from the Izu-Bonin- Mariana forearc, Leg 125, Proc. Ocean Drill. Program Sci. Results, 125, 487– 507. Parkinson, I. J., R. J. Arculus, and S. M. Eggins (2004), Peridotite xenoliths from Grenada, Lesser Antilles Island Arc, Contrib. Mineral. Petrol., 146, 241–262. Pearce, J. A., P. D. Kempton, G. M. Nowell, and S. R. Noble (1999), Hf-Nd element and isotope perspective on the nature and providence of mantle and subduction components in western Pacific arc-basin systems, J. Petrol., 40, 1579–1611. Pearce, J. A., P. F. Baker, S. J. Edwards, I. J. Parkinson, and P. T. Leat (2000), Geochemistry and tectonic significance of peridotites from the South Sandwich arc-basin system, South Atlantic, Contrib. Mineral. Petrol., 139, 36–53. Peate, D. W., and J. A. Pearce (1998), Causes of spatial compositional variations in Mariana arc lavas: Trace element evidence, Island Arc, 7, 479– 495. Plank, T., and C. H. Langmuir (1993), Tracing trace element from sediment input to volcanic output at subduction zones, Nature, 362, 739– 742. Plank, T., and C. H. Langmuir (1998), The chemical composition of subducted sediment and its consequences for the crust and mantle, Chem. Geol., 145, 325– 394. Ryan, J. G., and C. H. Langmuir (1987), The systematics of lithium abundances in young volcanic rocks, Geochim. Cosmochim. Acta, 51, 1727– 1741. Ryan, J. G., and C. H. Langmuir (1993), The systematics of boron abundances in young volcanic rocks, Geochim. Cosmochim. Acta, 57, 1489– 1498. Ryan, J. G., J. Morris, F. Tera, W. P. Leeman, and A. Tsvetkov (1995), Cross-arc geochemical variations in the Kurile Arc as a function of slab depth, Science, 270, 625– 627. Ryan, J. G., J. Morris, G. E. Bebout, and W. P. Leeman (1996), Describing chemical fluxes in subduction zones; insights from ‘depth-profiling’ studies of arc and forearc rocks, in Subduction Top to Bottom, Geophys. Monogr. Ser., vol. 96, edited by G. E. Bebout et al., pp. 263– 268, AGU, Washington, D. C. Salisbury, M. H., M. Shinohara, C. Richter, et al. (2002), Proceedings of the Ocean Drilling Program, Initial Reports [CD-ROM], vol. 195, Ocean Drilling Program, Texas A&M Univ., College Station. Salters, V. J. M., and A. Stracke (2004), Composition of the depleted mantle, Geochem. Geophys. Geosyst., 5, Q05B07, doi:10.1029/ 2003GC000597. Savov, I. P., J. G. Ryan, P. Mattie, and J. Schijf (2000), Fluid-mobile element systematics of ultramafic xenoliths from the Izu- Bonin- Mariana forearc: Implications for the chemical cycling in subduction zones, Eos Trans. AGU, 81(48), Fall Meet. Suppl., Abstract V-21C-02. Savov, I. P., J. G. Ryan, L. Chan, M. D’Antonio, M. Mottl, and P. Fryer (2002), Geochemistry of serpentinites from the S. Chamorro Seamount, ODP Leg 195, Site 1200, Mariana forearc- implications for recycling at subduction zones, Geochim. Cosmochim. Geosyst., 66, Abstract A670. Savov, I. P., S. Guggino, J. G. Ryan, P. Fryer, and M. Mottl (2005a), Geochemistry of serpentinite muds and metamorphic rocks from the Mariana forearc, ODP sites 1200 and 778– 779, South Chamorro and Conical seamounts, Proc. Ocean Drill. Program Sci. Results [Online], 195. (Available at http://www-odp.tamu.edu/publications/195_SR/103/ 103.htm) Savov, I. P., J. G. Ryan, M. D’Antonio, K. Kelley, and P. Mattie (2005b), Geochemistry of serpentinized peridotites from the Mariana Forearc Conical Seamount, ODP Leg 125: Implications for the elemental recycling at subduction zones, Geochem. Geophys. Geosyst., 6, Q04J15, doi:10.1029/ 2004GC000777. Savov, I. P., D. Rost, E. Vicenzi, and T. Zack (2006), Microscale mapping of boron and lithium in the Mariana sub-arc mantle via ToF-SIMS, Eos Trans. AGU, 87(36), Jt. Assem. Suppl., Abstract V43A-02. Scambelluri, M., O. Mu¨ntener, L. Ottolini, T. Pettke, and R. Vannucci (2004), The fate of B, Cl and Li in the subducted oceanic mantle and in the antigorite breakdown fluids, Earth Planet. Sci. Lett., 222(1), 217– 234. Schmidt, M. W., and S. Poli (1998), Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation, Earth Planet. Sci. Lett., 163, 361– 379. Schmidt, M. W., and S. Poli (2003), Generation of mobile components during subduction of oceanic crust, in Treatise on Geochemistry, vol. 3, The Crust, edited by R. L. Rudnick, pp. 567–593, Elsevier, New York. Sharma, M., and G. J. Wasserburg (1996), The neodymium isotopic compositions and rare earth patterns in highly depleted ultramafic rocks, Geochim. Cosmochim. Acta, 60, 4537–4550. Spiegelman, M., and P. B. Kelemen (2003), Extreme chemical variability as a consequence of channelized melt transport, Geochem. Geophys. Geosyst., 4(7), 1055, doi:10.1029/2002GC000336. Staudigel, H. (2003), Hydrothermal alteration processes in the oceanic crust, in Treatise on Geochemistry, vol. 3, The Crust, edited by R. L. Rudnick, pp. 511 –535, Elsevier, New York. Stern, R. J., M. J. Fouch, and S. Klemperer (2004), An overview of the Izu- Bonin Mariana subduction factory, in Inside the Subduction Factory, B09205 SAVOV ET AL.: MARIANA FORE-ARC SERPENTINITESIshikawa, T., and F. Tera (1999), Two isotopically distinct fluid components involved in the Mariana arc: Evidence from Nb/B ratios and B, Sr, Nd, and Pb isotope systematics, Geology, 27, 83– 86. Iwamori, H. (1998), Transportation of H2O and melting in subduction zone, Earth Planet. Sci. Lett., 160, 65– 80. Kelemen, P. B., K. Hanghoj, and A. R. Greene (2003), One view of the geochemistry of subduction-related magmatic arcs, with emphasis on primitive andesite and lower crust, in Treatise on Geochemistry, vol. 3, The Crust, edited by R. L. Rudnick, 593– 659, Elsevier, New York. Kelemen, P. B., et al. (2004), Proceedings of the Ocean Drilling Program, Initial Reports, vol. 209, 188 pp., Ocean Drill. Program, College Station, Tex. Kelley, K. A., T. Plank, J. Ludden, and H. Staudigel (2003), Composition of altered oceanic crust at ODP sites 801 and 1149, Geochem. Geophys. Geosyst., 4(6), 8910, doi:10.1029/2002GC000435. Kepezhinskas, P., M. J. Defant, and M. S. Drummond (1996), Progressive enrichment of island arc mantle by melt-peridotite interaction inferred from Kamchatka xenoliths, Geochim. Cosmochim. Acta, 60, 1217–1229. King, R. L., M. Kohn, and J. Eiler (2003), Constraints on the petrologic structure of the subduction zone slab-mantle interface from Franciscan Complex exotic ultramafic blocks, Geol. Soc. Am. Bull., 115(9), 1097– 1109. King, R. L., G. E. Bebout, T. Moriguti, and E. Nakamura (2006), Elemental mixing systematics and Sr–Nd isotope geochemistry of me´lange formation: Obstacles to identification of fluid sources to arc volcanics, Earth Planet. Sci. Lett., 246(3–4), 288–304. Leeman, W. P. (1996), Boron and other fluid-mobile elements in volcanic arc lavas: Implications for subduction processes, in Subduction Top to Bottom, Geophys. Monogr. Ser., vol. 96, edited by G. E. Bebout et al., pp. 269–276, AGU, Washington, D. C. Leeman, W. P., J. F. Lewis, R. C. Evarts, R. M. Conrey, and M. J. Streck (2005), Petrologic constraints on the thermal structure of the Cascades arc, J. Volcanol. Geotherm. Res., 140, 67–105. Lockwood, J. P. (1972), Possible mechanisms for the emplacement of alpine-type serpentinite, Mem. Geol. Soc. Am., 132, 273– 287. Luhr, J. F., and J. J. Aranda-Go´mez (1997), Mexican peridotite xenoliths and tectonic terranes: Correlations among vent location, texture, temperature, pressure, and oxygen fugacity, J. Petrol., 38, 1075–1112. Maury, R. C., M. Defant, and J.-L. Joron (1992), Metasomatism of the subarc mantle inferred from trace elements in Philippine xenoliths, Nature, 360, 661–663. Morris, J. D., and J. G. Ryan (2003), Subduction zone processes and implications for changing composition of the Upper and Lower Mantle, in Treatise on Geochemistry, vol. 2, The Mantle and Core, edited by R.W. Carson, pp. 451–471, Elsevier, New York. Mottl, M. J. (1992), Pore waters from serpentine seamounts in the Mariana and Izu –Bonin Forearcs, Leg 125: Evidence for volatiles from the subducting slab, Proc. Ocean Drill. Program Sci. Results, 125, 373–385. Mottl, M. J., S. C. Komor, P. Fryer, and C. L. Moyer (2003), Deep-slab fluids fuel extremophilic Archaea on a Mariana forearc serpentinite mud volcano: Ocean Drilling Program Leg 195, Geochem. Geophys. Geosyst., 4(11), 9009, doi:10.1029/2003GC000588. Mrosowski, C. E., D. E. Hayes, and B. Tylor (1981), Multichannel seismic reflection surveys of Leg 60 sites, Initial Rep. Deep Sea Drill. Proj., 60, 709–731. Nakamura, N. (1974), Determination of REE, Ba, Fe, Mg, Na and K in carbonaceous and ordinary chondrites, Geochim. Cosmochim. Acta, 38, 757–775. Niu, Y., and R. He´kinian (1997), Basaltic liquids and harzburgitic residues in the Garrett Transform: A case study at fast spreading ridges, Earth Planet. Sci. Lett., 146, 243–258. Noll, P. D., H. E. Newsom, W. P. Leeman, and J. G. Ryan (1996), The role of hydrothermal fluids in the production of subduction zone magmas: Evidence from siderophile and chalcophile trace elements and boron, Geochim. Cosmochim. Acta, 60, 587– 611. O’Hanley, D. (1996), Serpentinites: Records of Tectonic and Petrological History, 271 pp., Oxford Univ. Press, New York. Parkinson, I. J., and R. J. Arculus (1999), The redox state of subduction zones: Insights from arc-peridotites, Chem. Geol., 160, 409– 423. Parkinson, I. J., and J. A. Pearce (1998), Peridotites from the Izu-Bonin- Mariana forearc (ODP Leg 125), Evidence for mantle melting and meltmantle interaction in a supra-subduction zone setting, J. Petrol., 39, 1577–1618. Parkinson, I. J., J. A. Pearce, M. F. Thirlwall, K. T. M. Johnson, and G. Ingram (1992), Trace element geochemistry of peridotites from the Izu-Bonin- Mariana forearc, Leg 125, Proc. Ocean Drill. Program Sci. Results, 125, 487– 507. Parkinson, I. J., R. J. Arculus, and S. M. Eggins (2004), Peridotite xenoliths from Grenada, Lesser Antilles Island Arc, Contrib. Mineral. Petrol., 146, 241–262. Pearce, J. A., P. D. Kempton, G. M. Nowell, and S. R. Noble (1999), Hf-Nd element and isotope perspective on the nature and providence of mantle and subduction components in western Pacific arc-basin systems, J. Petrol., 40, 1579–1611. Pearce, J. A., P. F. Baker, S. J. Edwards, I. J. Parkinson, and P. T. Leat (2000), Geochemistry and tectonic significance of peridotites from the South Sandwich arc-basin system, South Atlantic, Contrib. Mineral. Petrol., 139, 36–53. Peate, D. W., and J. A. Pearce (1998), Causes of spatial compositional variations in Mariana arc lavas: Trace element evidence, Island Arc, 7, 479– 495. Plank, T., and C. H. Langmuir (1993), Tracing trace element from sediment input to volcanic output at subduction zones, Nature, 362, 739– 742. Plank, T., and C. H. Langmuir (1998), The chemical composition of subducted sediment and its consequences for the crust and mantle, Chem. Geol., 145, 325– 394. Ryan, J. G., and C. H. Langmuir (1987), The systematics of lithium abundances in young volcanic rocks, Geochim. Cosmochim. Acta, 51, 1727– 1741. Ryan, J. G., and C. H. Langmuir (1993), The systematics of boron abundances in young volcanic rocks, Geochim. Cosmochim. Acta, 57, 1489– 1498. Ryan, J. G., J. Morris, F. Tera, W. P. Leeman, and A. Tsvetkov (1995), Cross-arc geochemical variations in the Kurile Arc as a function of slab depth, Science, 270, 625– 627. Ryan, J. G., J. Morris, G. E. Bebout, and W. P. Leeman (1996), Describing chemical fluxes in subduction zones; insights from ‘depth-profiling’ studies of arc and forearc rocks, in Subduction Top to Bottom, Geophys. Monogr. Ser., vol. 96, edited by G. E. Bebout et al., pp. 263– 268, AGU, Washington, D. C. Salisbury, M. H., M. Shinohara, C. Richter, et al. (2002), Proceedings of the Ocean Drilling Program, Initial Reports [CD-ROM], vol. 195, Ocean Drilling Program, Texas A&M Univ., College Station. Salters, V. J. M., and A. Stracke (2004), Composition of the depleted mantle, Geochem. Geophys. Geosyst., 5, Q05B07, doi:10.1029/ 2003GC000597. Savov, I. P., J. G. Ryan, P. Mattie, and J. Schijf (2000), Fluid-mobile element systematics of ultramafic xenoliths from the Izu- Bonin- Mariana forearc: Implications for the chemical cycling in subduction zones, Eos Trans. AGU, 81(48), Fall Meet. Suppl., Abstract V-21C-02. Savov, I. P., J. G. Ryan, L. Chan, M. D’Antonio, M. Mottl, and P. Fryer (2002), Geochemistry of serpentinites from the S. Chamorro Seamount, ODP Leg 195, Site 1200, Mariana forearc- implications for recycling at subduction zones, Geochim. Cosmochim. Geosyst., 66, Abstract A670. Savov, I. P., S. Guggino, J. G. Ryan, P. Fryer, and M. Mottl (2005a), Geochemistry of serpentinite muds and metamorphic rocks from the Mariana forearc, ODP sites 1200 and 778– 779, South Chamorro and Conical seamounts, Proc. Ocean Drill. Program Sci. Results [Online], 195. (Available at http://www-odp.tamu.edu/publications/195_SR/103/ 103.htm) Savov, I. P., J. G. Ryan, M. D’Antonio, K. Kelley, and P. Mattie (2005b), Geochemistry of serpentinized peridotites from the Mariana Forearc Conical Seamount, ODP Leg 125: Implications for the elemental recycling at subduction zones, Geochem. Geophys. Geosyst., 6, Q04J15, doi:10.1029/ 2004GC000777. Savov, I. P., D. Rost, E. Vicenzi, and T. Zack (2006), Microscale mapping of boron and lithium in the Mariana sub-arc mantle via ToF-SIMS, Eos Trans. AGU, 87(36), Jt. Assem. Suppl., Abstract V43A-02. Scambelluri, M., O. Mu¨ntener, L. Ottolini, T. Pettke, and R. Vannucci (2004), The fate of B, Cl and Li in the subducted oceanic mantle and in the antigorite breakdown fluids, Earth Planet. Sci. Lett., 222(1), 217– 234. Schmidt, M. W., and S. Poli (1998), Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation, Earth Planet. Sci. Lett., 163, 361– 379. Schmidt, M. W., and S. Poli (2003), Generation of mobile components during subduction of oceanic crust, in Treatise on Geochemistry, vol. 3, The Crust, edited by R. L. Rudnick, pp. 567–593, Elsevier, New York. Sharma, M., and G. J. Wasserburg (1996), The neodymium isotopic compositions and rare earth patterns in highly depleted ultramafic rocks, Geochim. Cosmochim. Acta, 60, 4537–4550. Spiegelman, M., and P. B. Kelemen (2003), Extreme chemical variability as a consequence of channelized melt transport, Geochem. Geophys. Geosyst., 4(7), 1055, doi:10.1029/2002GC000336. Staudigel, H. (2003), Hydrothermal alteration processes in the oceanic crust, in Treatise on Geochemistry, vol. 3, The Crust, edited by R. L. Rudnick, pp. 511 –535, Elsevier, New York. Stern, R. J., M. J. Fouch, and S. Klemperer (2004), An overview of the Izu- Bonin Mariana subduction factory, in Inside the Subduction Factory,Geophys. Monogr. Ser., vol. 138, edited by J. Eiler, pp. 175– 223, AGU, Washington, D. C. Stern, R. J., E. Kohut, S. H. Bloomer, M. Leybourne, M. Fouch, and J. Vervoort (2006), Subduction factory processes beneath the Guguan cross-chain, Mariana Arc: No role for sediments, are serpentinites important?, Contrib. Mineral. Petrol., 151, 202– 221. Straub, S. M., and G. D. Layne (2002), The systematics of boron isotopes in Izu arc front volcanic rocks, Earth Planet. Sci. Lett., 198, 25– 39. Straub, S. M., and G. D. Layne (2003), Decoupling of fluids and fluidmobile elements during shallow subduction: Evidence from halogen-rich andesite melt inclusions from the Izu arc volcanic front, Geochem. Geophys. Geosyst., 4(7), 9004, doi:10.1029/2002GC000349. Sun, S. S., and W. F. McDonough (1989), Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes, in Magmatism in the Ocean Basins, edited by A. S. Sounders and M. J. Norrey, Geol. Soc. Publ., 42, 313– 346. Tatsumi, Y. (1986), Formation of the volcanic front in subduction zones, Geophys. Res. Lett., 13, 717–720. Tatsumi, Y., and S. Eggins (1995), Subduction Zone Magmatism, 211 pp., Blackwell, Malden, Mass. Walter, M. J. (2003), Melt extraction and compositional variability in mantle lithosphere, in Treatise on Geochemistry, vol. 2, The Mantle and Core, edited by R. W. Carson, 363– 394, Elsevier, New York. Wessel, J., P. Fryer, P. Wessel, and B. Taylor (1994), Extension in the northern Mariana forearc, J. Geophys. Res., 99, 15,181–15,203. Woodhead, J. D., S. Eggins, and J. A. Gamble (1993), High field strength and transition element systematics in island arc and back-arc basin basalts: Evidence for multi- phase melt extraction and a depleted mantle wedge, Earth Planet. Sci. Lett., 114, 491– 504. You, C.-F., A. J. Spivack, J. H. Smith, and J. M. Gieskes (1993), Mobilization of boron in convergent margins: Implications for the boron geochemical cycle, Geology, 21, 207– 210. You, C.-F., L. Chan, A. J. Spivack, and J. M. Gieskes (1995), Lithium, boron, and their isotopes in sediments and pore waters of Ocean Drilling Program Site 808, Nankai Trough: Implications for fluid expulsion in accretionary prisms, Geology, 23, 37– 40. Zack, T., I. P. Savov, and J. G. Ryan (2004), Storage of light elements in the forearc mantle wedge: SIMS measurements of serpentinites from ODP Leg 195, paper presented at International Geological Congress, Int. Union of Geol. Sci., Florence, Italy.en
dc.description.obiettivoSpecifico2.3. TTC - Laboratori di chimica e fisica delle rocceen
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorSavov, I. P.en
dc.contributor.authorRyan, J. G.en
dc.contributor.authorD’Antonio, M.en
dc.contributor.authorFryer, P.en
dc.contributor.departmentDepartment of Terrestrial Magnetism, Carnegie Institution ofen
dc.contributor.departmentGeology Department, University of South Florida, Tampa, Florida,en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentHawaii Institute of Geophysics and Planetology, University of Hawaiien
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptDepartment of Terrestrial Magnetism, Carnegie Institution of-
crisitem.author.deptGeology Department, University of South Florida, Tampa, Florida,-
crisitem.author.deptUniversità di Napoli "Federico II"-
crisitem.author.deptHawaii Institute of Geophysics and Planetology, University of Hawaii-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
SavJef- 2007.pdf5.51 MBAdobe PDF
Show simple item record

Page view(s) 50

144
checked on Apr 24, 2024

Download(s)

24
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric