Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/2551
DC FieldValueLanguage
dc.contributor.authorallLucente, F. P.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italiaen
dc.contributor.authorallMargheriti, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italiaen
dc.contributor.authorallPiromallo, C.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallBarruol, G.; Observatoire Geodesique de Tahiti, Laboratoire Terre-Ocean, Universite´ de la Polynesie Francaiseen
dc.date.accessioned2007-10-08T13:02:31Zen
dc.date.available2007-10-08T13:02:31Zen
dc.date.issued2006en
dc.identifier.urihttp://hdl.handle.net/2122/2551en
dc.description.abstractIn the south-eastern corner of the Tyrrhenian basin, in the central Mediterranean Sea, a tight alignment of earthquakes along a well-defined Benioff zone marks one of the narrowest active trenches worldwide, where one of the last fragment of the former Tethys ocean is consumed. Seismic tomography furnishes snapshot images of the present-day position of this slab, and seismic anisotropy allows to reconstruct the past kinematics of the subduction process. Using seismic anisotropy fast directions as a proxy for the present and past mantle flow, we look backward for the seismic traces of the slab motion through the western-central Mediterranean mantle, from the starting locus of subduction toward its present day position. The result of combining independent data sets provides a coherent pattern of anisotropy that illustrates an example of slab rollback from its initiation point to its presentday position.en
dc.language.isoEnglishen
dc.publisher.nameElsevieren
dc.relation.ispartofEarth Planet. Sci. Lett.en
dc.relation.ispartofseries/ 241 (2006)en
dc.subjectMediterraneanen
dc.subjectSeismicen
dc.titleSeismic anisotropy reveals the long route of the slab through the western-central Mediterranean mantleen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber517-529en
dc.subject.INGV02. Cryosphere::02.02. Glaciers::02.02.03. Geomorphologyen
dc.identifier.doi10.1016/j.epsl.2005.10.041en
dc.relation.references[1] J.F. Dewey, M.L. Helman, E. Turco, D.W.H. Hutton, S.D. Knott, Kinematics of the western Mediterranean, in: M.P. Coward, D. Dietrich, R.G. Park (Eds.), Alpine Tectonics, Geol. Soc. London, Spec. Publ., vol. 45, 1989, pp. 265– 283. [2] S. Rebaı¨, H. Philip, A. Taboada, Modern tectonic stress field in the Mediterranean region: evidence for variations in stress directions at different scales, Geophys. J. Int. 110 (1992) 106– 140. [3] J. Dercourt, L.P. Zonenshain, L.E. Ricou, Geological evolution of the Tethys belt from the Atlantic to the Pamir since the Lias, Tectonophysics 123 (1986) 241– 315. [4] B. Durand, A. Mascle, L. Jolivet, F. Horva`th, M. Se´ranne (Eds.), The Mediterranean Basins: Tertiary Extension Within the Alpine Orogen, Geol. Soc. London, Spec. Publ., vol. 156, 1999. [5] L. Jolivet, C. Faccenna, Mediterranean extension and the Africa–Eurasia collision, Tectonics 19 (2000) 1095–1107. [6] A. Malinverno, W.B.F. Ryan, Extension in the Tyrrhenian Sea and shortening in the Apennines as results of arc migration driven by sinking of the lithosphere, Tectonics 5 (1986) 227– 245. [7] E. Gueguen, C. Doglioni, M. Fernandez, On the post-25 Ma geodynamic evolution of the western Mediterranean, Tectonophysics 298 (1998) 259– 269. [8] C. Faccenna, T.W. Becker, F.P. Lucente, L. Jolivet, F. Rossetti, History of subduction and back-arc extension in the Central Mediterranean, Geophys. J. Int. 145 (2001) 809–820. [9] G. Selvaggi, C. Chiarabba, Seismicity and P-wave velocity image of the Southern Tyrrhenian subduction zone, Geophys. J. Int. 122 (1995) 818– 826. [10] C. Faccenna, C. Piromallo, A. Crespo-Blanc, L. Jolivet, F. Rossetti, Lateral slab deformation and the origin of the western Mediterranean arcs, Tectonics 23 (2004), doi:10.1029/ 2002TC001488. [11] F.P. Lucente, C. Chiarabba, G. Cimini, D. Giardini, Tomographic constraints on the geodynamic evolution of the Italian region, J. Geophys. Res. 104 (1999) 20307–20327. [12] C. Piromallo, A. Morelli, P wave tomography of the mantle under the Alpine-Mediterranean area, J. Geophys. Res. 108 (2003), doi:10.1029/2002JB001757. [13] M.J.R. Wortel, W. Spakman, Subduction and slab detachment in the Mediterranean-Carpathian Region, Science 290 (2000) 1910– 1917. [14] W. Ben Ismail, D. Mainprice, An olivine fabric database: an overview of upper mantle fabrics and seismic anisotropy, Tectonophysics 296 (1998) 145– 158. [15] D. Mainprice, G. Barruol, W. Ben Ismail, The seismic anisotropy of the Earth’s mantle: from single crystal to polycrystal, in: S.I. Karato (Ed.), Earth’s Deep Interior: Mineral Physics and Tomography from the Atomic to the Global Scale, Geodyn. Ser., vol. 117, AGU, Washington DC, 2000, pp. 237– 264. [16] J. Park, V. Levin, Seismic anisotropy: tracing plate dynamics in the mantle, Science 296 (2002) 485– 489. [17] P.G. Silver, Seismic anisotropy beneath the continents: Probing the depths of geology, Annu. Rev. Earth Planet. Sci. 24 (1996) 385– 432. [18] M.K. Savage, Seismic anisotropy and mantle deformation: What have we learned from shear wave splitting? Rev. Geophys. 37 (1999) 65–106. [19] W. Ben Ismail, G. Barruol, D. Mainprice, The Kaapvaal craton seismic anisotropy: petrophysical analyses of upper mantle kimberlite nodules, Geophys. Res. Lett. 28 (2001) 2497– 2500. [20] G. Barruol, A. Souriau, Anisotropy beneath the Pyrenees range from teleseismic shear wave splitting, Geophys. Res. Lett. 22 (1995) 493–496. [21] G. Barruol, A. Souriau, A. Vauchez, J. Diaz, J. Gallart, J. Tubia, J. Cuevas, Lithospheric anisotropy beneath the Pyrenees from shear wave splitting, J. Geophys. Res. 103 (1998) 30039– 30054. [22] G. Barruol, M. Granet, A Tertiary asthenospheric flow beneath the southern French Massif Central indicated by upper mantle seismic anisotropy and related to the west Mediterranean extension, Earth Planet. Sci. Lett. 202 (2002) 31– 47. [23] L. Margheriti, F.P. Lucente, S. Pondrelli, SKS splitting measurements in the Apenninic-Tyrrhenian domain (Italy) and their relation with lithospheric subduction and mantle convection, J. Geophys. Res. 108 (2003), doi:10.1029/2002JB001793. [24] S. Civello, L. Margheriti, Toroidal mantle flow around the Calabrian slab (Italy) from SKS splitting, Geophys. Res. Lett. 31 (2004), doi:10.1029/2004GL019607. [25] G. Barruol, A. Deschamps, O. Coutant, Mapping upper mantle anisotropy beneath SE France by SKS splitting indicates a Neogene asthenospheric flow induced by the Apenninic slab rollback and deflected by the deep Alpine roots, Tectonophysics 394 (2004) 125–138. [26] P.G. Silver, W.W. Chan, Shear wave splitting and subcontinental mantle deformation, J. Geophys. Res. 96 (1991) 16429– 16454. [27] M.K. Savage, A.F. Sheehan, Seismic anisotropy and mantle flow from the great basin to the Great Plains, western United States, J. Geophys. Res. 105 (2000) 13715– 13734. [28] E. Pera, D. Mainprice, L. Burlini, Petrophysical properties of the upper mantle beneath the Torre Alfina area (Northern Apennines, Central Italy), Tectonophysics 370 (2003) 11 – 30. [29] C. Faccenna, F. Funiciello, D. Giardini, F.P. Lucente, Episodic back-arc extension during restricted mantle convection in the Central Mediterranean, Earth Planet. Sci. Lett. 187 (2001) 105–116. [30] R. Van der Voo, Paleomagnetism of the Atlantic, Tethys and Iapetus Oceans, Cambridge University Press, Cambridge, 1993. 411 pp. [31] G. Rosenbaum, G.S. Lister, Neogene and Quaternary rollback evolution of the Tyrrhenian Sea, the Apennines, and the Sicilian Maghrebides, Tectonics 23 (2004), doi:10.1029/2003TC001518. [32] C. Kincaid, R.W. Griffiths, Laboratory models of the thermal evolution of the mantle during rollback subduction, Nature 425 (2003) 58– 62. [33] B. Mu¨ ller, V. Wehrle, S. Hettel, B. Sperner, K. Fuchs, A new method for smoothing orientated data and its application to stress data, in: M.S. Ameen (Ed.), Fracture and In-Situ Stress Characterization of Hydrocarbon Reservoirs, Geol. Soc. London, Spec. Publ., vol. 209, 2003, pp. 107– 126. [34] R.M. Russo, P.G. Silver, Trench-parallel flow beneath the Nazca plate from seismic anisotropy, Science 263 (1994) 1105– 1111. [35] J. Plomerova´, V. Babuska, R. Scarpa, Teleseismic P-residual study in the Italian region; inferences on large scale anisotropic structure of the subcrustal lithosphere, Ann. Geophys. 41 (1998) 33–48. [36] H. Jung, S. Karato, Water induced fabric transitions in Olivine, Science 293 (2001) 1460– 1463. [37] A. Vauchez, G. Barruol, A. Nicolas, Comment on bSKS splitting beneath rift zonesQ, J. Geophys. Res. 104 (1999) 10787– 10789. [38] F. Funiciello, C. Faccenna, D. Giardini, K. Regenauer-Lieb, Dynamics of retreating slabs: 2. Insights from three-dimensional laboratory experiments, J. Geophys. Res. 108 (2003), doi:10.1029/2001JB00896. [39] M. Granet, M. Wilson, U. Achauer, Imaging a mantle plume beneath the French Massif Central, Earth Planet. Sci. Lett. 136 (1995) 281–296. [40] F.P. Lucente, F. Speranza, Belt bending driven by deep processes: geophysical evidences from the northern Apennines (Italy), Tectonophysics 337 (2001) 51– 62. [41] P. Wessel, W.H.F. Smith, New, improved version of Generic Mapping Tools released [version 3.1], EOS Trans. AGU 79 (1998).en
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorLucente, F. P.en
dc.contributor.authorMargheriti, L.en
dc.contributor.authorPiromallo, C.en
dc.contributor.authorBarruol, G.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentObservatoire Geodesique de Tahiti, Laboratoire Terre-Ocean, Universite´ de la Polynesie Francaiseen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptObservatoire Geodesique de Tahiti, Laboratoire Terre-Ocean, Universite´ de la Polynesie Francaise-
crisitem.author.orcid0000-0002-8717-1720-
crisitem.author.orcid0000-0003-3853-254X-
crisitem.author.orcid0000-0003-3478-5128-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent02. Cryosphere-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
284.pdf1.25 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

78
checked on Feb 10, 2021

Page view(s)

134
checked on Apr 24, 2024

Download(s)

36
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric