Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/16823
Authors: Paniagua-Arroyave, Juan Felipe* 
Spada, Giorgio* 
Melini, Daniele* 
Duque-Trujillo, José F* 
Title: Holocene relative sea-level changes along the Caribbean and Pacific coasts of northwestern South America
Journal: Quaternary Research 
Publisher: Cambridge University Press
Issue Date: 2024
DOI: 10.1017/qua.2023.73
Abstract: Predicting coastal change depends upon our knowledge of postglacial relative sea-level variability, partly controlled by glacio-isostatic responses to ice-sheet melting. Here, we reconstruct the postglacial relative sea-level changes along the Caribbean and Pacific coasts of northwestern South America by numerically solving the sea-level equation with two scenarios of mantle viscosity: global standard average and high viscosity. Our results with the standard model (applicable to the Pacific coast) agree with earlier studies by indicating a mid-Northgrippian high stand of ~2 m. The high-viscosity simulation (relevant to the Caribbean coast) shows that the transition from far- to intermediate-field influence of the Laurentide Ice Sheet occurs between Manzanillo del Mar and the Gulf of Morrosquillo. South of this location, the Colombian Caribbean coast has exhibited a still stand with a nearly constant Holocene relative sea level. By analyzing our simulations considering sea-level indicators, we argue that tectonics is more prominent than previously assumed, especially along the Caribbean coast. This influence prevents a simplified view of regional relative sea-level changes on the northwestern South American coast.
Description: All Rights Reserved
Appears in Collections:Article published / in press

Files in This Item:
File Description SizeFormat
PaniEtAl_2024_QR_NoCopyEditing.pdf1.12 MBAdobe PDFView/Open
Show full item record

Page view(s)

19
checked on Apr 24, 2024

Download(s)

19
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric