Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/16170
DC FieldValueLanguage
dc.date.accessioned2023-02-13T14:35:43Z-
dc.date.available2023-02-13T14:35:43Z-
dc.date.issued2022-
dc.identifier.urihttp://hdl.handle.net/2122/16170-
dc.description.abstractGround deformation monitoring of active volcanoes is used routinely to determine phases of volcano unrest and can provide insights in the evolving plumbing system of a volcano and the influence local tectonics structures have on the volcano tectonic evolution of the volcanic edifice. Volcanic deformation analysis can be performed using velocity and direction measurements of the ground surface using Global Navigation Satellite System (GNSS). In this study, we perform two-dimensional deformation analyses of pre‑ and post‑eruptive phases with the scope of determining the strain before and after an eruptive phase at Mt. Etna Volcano (southern Italy) during 2004‑2006. In order to do so, we analyse the GNSS displacement data from Mt. Etna between 2004‑2005 and 2005‑2006 using the dedicated SSPX software. The extention, dilation and rotation maps of the study area were determined. The contraction and volumetric decrease concomitant the 2004‑2005 effusive eruptive period and extension and volumetric increase for the 2005‑2006 data series were observed. The deformation on the northeast part of Mt. Etna Volcano, which showed different characteristics with respect to its surroundings, was thought to be conditioned by the dynamic of the Pernicana fault system. Additionally, Complete Spherical Bouguer (CSB) gravity anomaly and the gravity gradient tensors were calculated giving insight on the subsurface structures of Mt. Etna Volcano and its surroundings.en_US
dc.language.isoEnglishen_US
dc.publisher.nameINGVen_US
dc.relation.ispartofAnnals of Geophysicsen_US
dc.relation.ispartofseries5/65 (2022)en_US
dc.rightsAttribution-NoDerivs 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nd/3.0/us/*
dc.subjectDeformationen_US
dc.subjectGravityen_US
dc.subjectGNSSen_US
dc.titleExploring the Kinematic Structure of Mount Etna Volcano (Sicily, Italy) by Deformation Analysis and Gravity Gradient Tensorsen_US
dc.typearticleen
dc.description.statusPublisheden_US
dc.type.QualityControlPeer-revieweden_US
dc.description.pagenumberGT537en_US
dc.subject.INGV04.03. Geodesyen_US
dc.subject.INGV04.08. Volcanologyen_US
dc.identifier.doi10.4401/ag-8719en_US
dc.relation.referencesAcocella, V. and M. Neri (2005). Structural features of an active strike‑slip fault on the sliding flank of Mt. Etna (Italy), J. Struct. Geol., 27, 343‑355. Acocella, V., M. Neri, B. Behncke, A. Bonforte, C. Del Negro and G. Ganci (2016). Why does a mature volcano need new vents? The case of the New Southeast Crater at Etna. Frontiers in Earth Science, 4, 67. Aloisi, M., A. Bonaccorso, F. Cannavò and G. Currenti (2018). Coupled Short‑ and Medium‑Term Geophysical Signals at Etna Volcano: Using deformation and Strain to Infer Magmatic Processes from 2009 to 2017, Front. Earth. Sci., 6, 109. Alparone, S., G. Barberi, A. Bonforte, V. Maiolino and A. Ursino (2011). Evidence of multiple strain fields beneath the eastern flank of Mt. Etna volcano (Sicily, Italy) deduced from seismic and geodetic data during 2003‑2004, Bull. Volcanol., 73, 869‑885, https://doi.org/10.1007/s00445-011-0456-1. Alparone, S., A. Bonaccorso, A. Bonforte and G. Currenti (2013). Long-term stress-strain analysis of volcano flank instability: The eastern sector of Etna from 1980 to 2012, J. Geophys. Res. Solid Earth, 118, 5098‑5108, doi:10.1002/jgrb.50364. Arisoy, M. Ö. and Ü. Dikmen (2011). Potensoft: MATLAB-based software for potential field data processing, modeling and mapping, Compu. Geosci., 37, 7, 935‑942. Azzaro, R., L. Ferreli, A. L. Michetti, L. Serva and E. Vittori (1998a). Environmental hazard of capable faults: the case of the Pernicana fault (Mt. Etna, Sicily), Nat. Haz., 17, 147‑162. Azzaro, R., S. Branca, S. Giammanco, S. Gurrieri, R. Rasa and M. Valenza (1998b). New evidence for the form and extent of the Pernicana Fault System (Mount Etna) from structural and soil-gas surveying, J. Volcanol. Geotherm. Res., 84, 143‑152. Azzaro, R. (1999). Earthquake surface faulting at mount etna volcano (sicily) and implications for active tectonics, J. Geodynamics, 28, 193‑213. Azzaro, R., M. Mattia and G. Puglisi (2001). Fault creep and kinematics of the eastern segment of the Pernicana Fault (Mt. Etna, Italy) derived from geodetic observations and their tectonic significance, Tectonophysics, 333, 401‑415. Azzaro, R., A. Bonforte, S. Branca and F. Guglielmino (2013). Geometry and kinematics of the fault systems controlling the unstable flank of Etna volcano (Sicily), J. Volcanol. Geotherm. Res., 251, 5‑15. Balmino, G., N. Vales, S. Bonvalot and A. Briais (2011). Spherical harmonic modeling to ultra‑high degree of Bouguer and isostatic anomalies, J. Geodesy, 86, 7, 499‑520. Budetta, G., D. Carbone and F. Greco (1999). Subsurface mass redistributions at Mount Etna (Italy) during the 1995‑1996 explosive activity detected by microgravity studies, Geophy. J. Int., 138, 1, 77‑88. Carbone, D., G. Budetta, F. Greco and H. Rymer, (2003). Combined discrete and continuous gravity observations at Mount Etna, J. Volcanol. Geotherm. Res., 123, 1‑2, 123‑135. Carbone, D., L. Zuccarello, G. Saccorotti and F. Greco (2006). Analysis of simultaneous gravity and tremor anomalies observed during the 2002‑2003 Etna eruption, Earth Planet. Sci. Lett., 245, 3‑4, 616‑629. Carbone, D., L. Zuccarello and G. Saccorotti (2008). Geophysical indications of magma uprising at Mt Etna during the December 2005 to January 2006 non‑eruptive period, Geophys. Res. Lett., 35(6), L06305 Carbone, D., P. Jousset and C. Musumeci (2009). Gravity “steps’’ at Mt. Etna volcano (Italy): Instrumental effects or evidences of earthquake-triggered magma density changes, Geophys. Res. Lett., 36, L02301. Cardozo, N. and R.W. Allmendinger (2009). SSPX: A program to compute strain from displacement/velocity data, Comp. Geosci., 35, 1343‑1357. Castro‑Melgar, I., J. Prudencio, E. Del Pezzo, E. Giampiccolo and J. M. Ibanez (2021). Shallow magma storage beneath Mt. Etna: Evidence from new attenuation tomography and existing velocity models, Journal of Geophysical Research: Solid Earth, 126, 7, e2021JB022094. Çırmık, A. (2014). Determining the deformation in Western Anatolia with GPS and gravity measurements, PhD. Thesis, Dokuz Eylul University, The Graduate School of Natural and Applied Sciences, Izmir, Turkey. Çırmık, A., O. Pamukçu and Z. Akçığ (2016). Mass and stress changes in the Menderes Massif (western Anatolia, Turkey), J. Asian Earth Sci., 131, 109‑122. Çırmık, A., F. Doğru, T. Gönenç and O. Pamukçu (2017). The stress/strain analysis of kinematic structure at Gülbahçe Fault and Uzunkuyu Intrusive (Izmir, Turkey), Pure App. Geophy., 174, 3, 1425‑1440. Çırmık, A. and O. Pamukçu (2017). Clarifying the interplate main tectonic elements of Western Anatolia, Turkey by using GNSS velocities and Bouguer gravity anomalies, J.Asian Earth Sci., 148, 294‑304. DTU Space, National Space Instutute (Denmark). Global Mean SeaSurface. ftp.space.dtu.dk/pub/DTU10. Fornaciai, A., D. Andronico, M. Favalli, L. Spampinato, S. Branca, L. Lodato, A. Bonforte and L. Nannipieri (2021). The 2004‑2005 Mt. Etna compound lava flow field: a retrospective analysis by combining remote and field methods, J. Geophys. Res.: Solid Earth, 126, 3, e2020JB020499. Global Volcanism Program (GVP) (2013). Volcanoes of the World, v. 4.9.1 (17 Sep 2020). Venzke, E (ed.). Smithsonian Institution, Downloaded 12 Oct 2020. https://doi.org/10.5479/si.GVP.VOTW4-2013. Global Volcanism Program (GVP) (2018). Report on Etna (Italy) (Crafford, A.E., and Venzke, E., eds.). Bulletin of the Global Volcanism Network, 43, 12. Smithsonian Institution. Hirn, A., R. Nicolich, J. Gallart, M. Laigle, L. Cernobori and the ETNASEIS Scientific Group. (1997). Roots of Etna volcano in faults of great earthquakes, Earth Planet Sci., 148, 7‑9. Janssen,V. (2003). A mixed-mode GPS network processing approach for volcano deformation monitoring. PhD. Thesis, University of New South Wales Sydney. Australia. Janssen, V. (2007). Volcano deformation monitoring using GPS, J. Spatial Sci., 52, 1, 41‑54. Larson, K. M., M. Poland and A. Miklius (2010). Volcano monitoring using GPS: Developing data analysis strategies based on the June 2007 Kīlauea Volcano intrusion and eruption, J. Geophys. Res., 115, B07406, doi:10.1029/2009JB007022. Lo Giudice and E. R. Rasa (1992). Very shallow earthquakes and brittle deformation in active volcanic areas: the Etnean region as example, Tectonophysics, 202, 257‑268. Malaliçi, B. C. (2019). Gülbahçe fayı ve çevresinin jeodinamik yapısının irdelenmesi, Msc Thesis, Dokuz Eylul University, The Graduate School of Natural and Applied Sciences, Izmir, Turkey, 77 (In Turkish). Malaliçi, B. C., O. Pamukçu, A. Çırmık and H. Dindar (2019). Deformation Analysis of Cyprus and its surroundings (East Mediterranean) with using SSPX software, Dokuz Eylul University Faculty of Engineering Journal of Science and Engineering, 21, 61, 235‑246. McGuire, W. J., J. L. Moss, S. J. Saunders and I. S. Stewart (1996). Dyke-induced rifting and edifice instability at Mount Etna. In: Gravestock, P J and McGuire W J (Eds), Etna: fifteen years on, Cheltenham and Gloucester Special Publication. Neri, M., V. H. Garduno, G. Pasquare and R. Rasa (1991). Studio strutturale e modello cinematico della Valle del Bove e del settore nord-orientale etneo, Acta Vulcanol., 1, 17‑24. Pamukcu, O. and A. Yurdakul (2008). Isostatic compensation in western Anatolia with estimate of the effective elastic thickness, Turkish J. Earth Sci., 17, 3, 545‑557. Pamukçu, O. A. and Z. Akçığ (2011). Isostasy of the Eastern Anatolia (Turkey) and discontinuities of its crust, Pure App. Geophy., 168, 5, 901‑917. Pavlis, N. K., S. A. Holmes, S. C. Kenyon and J. K. Factor (2008). An earth gravitational model to degree 2160: EGM2008, EGU general assembly, 10, 13‑18. Puglisi, G., A. Bonforte and S. R. Maugeri (2001). Ground deformation patterns on Mount Etna, 1992 to 1994, inferred from GPS data, Bull. Volcanol., 62, 371‑384. Puglisi, G. and A. Bonforte (2004). Dynamics of Mount Etna Volcano inferred from static and kinematic GPS measurements, J. Geophy. Res.: Solid Earth, 109, B11. Rasa, R., R. Azzaro and O. Leonardi (1996). Aseismic creep on faults and flank instability at Mt. Etna volcano, Sicily. In: McGuire W C, Jones A P and Neuberg J. (Eds), Volcano Instability on the Earth and Other Planets, Geol. Soc. Special Pub., 110, 179‑192. Rymer, H., J. B. Murray, G. C. Brown, F. Ferrucci and W. J. McGuire (1993). Mechanisms of magma eruption and emplacement at Mt Etna between 1989 and 1992, Nature, 361, 6411, 439‑441. Romano, R. (1982). Succession of volcanic activity in the Etnean area, in Mount Etna Volcano a Review of Recent Earth Sciences Studies, Memorie della Società Geologica Italiana, 23, edited by R. Romano, 27‑48, Bardi Editor, Rome, Italy. Rust, D. and M. Neri (1996). The boundaries of large-scale collapse on the flanks of Mount Etna, Sicily. In: McGuire, W C, Jones A P and Neuberg J. (Eds), Volcano Instability on the Earth and Other Planets, Geol. Soc. Special Pub., 110, 193‑208. Schiavone, D. and M. Loddo (2007). 3‑D density model of Mt. Etna Volcano (Southern Italy), J. Volcanol. Geotherm. Res, 164, 161‑175. Urlaub, M., F. Petersen, F. Gross, A. Bonforte, G. Puglisi, F. Guglielmino, et al. (2018). Gravitational collapse of Mount Etna’s southeastern flank, Science Advances, 4 10. Watts, A. B. (2001). Isostasy and Flexure of the Lithosphere. Cambridge University Press.en_US
dc.description.obiettivoSpecifico2V. Struttura e sistema di alimentazione dei vulcanien_US
dc.description.journalTypeJCR Journalen_US
dc.relation.issn2037-416Xen_US
dc.contributor.authorÇırmık, Ayça-
dc.contributor.authorDoğru, Fikret-
dc.contributor.authorAnkaya Pamukçu, Oya-
dc.contributor.authorTurguz, Başak-
dc.contributor.authorBonforte, Alessandro-
dc.contributor.departmentDokuz Eylul University, Engineering Faculty, Department of Geophysical Engineering, Izmir, Turkiyeen_US
dc.contributor.departmentAtaturk University, Oltu Vocational College, Construction, Erzurum, Turkiyeen_US
dc.contributor.departmentDokuz Eylul University, Engineering Faculty, Department of Geophysical Engineering, Izmir, Turkiyeen_US
dc.contributor.departmentDokuz Eylul University, Engineering Faculty, Department of Geophysical Engineering, Izmir, Turkiyeen_US
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italiaen_US
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptDokuz Eylul University, Engineering Faculty, Department of Geophysical Engineering, Izmir, Turkiye-
crisitem.author.deptAtaturk University, Oltu Vocational College, Construction, Erzurum, Turkiye-
crisitem.author.deptDokuz Eylul University, Engineering Faculty, Department of Geophysical Engineering, Izmir, Turkiye-
crisitem.author.deptDokuz Eylul University, Engineering Faculty, Department of Geophysical Engineering, Izmir, Turkiye-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia-
crisitem.author.orcid0000-0003-0435-7763-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat
Cirmic_et_al_AG_2022_Gravity.pdfOpen Access published article2.26 MBAdobe PDFView/Open
Show simple item record

Page view(s)

305
checked on Apr 24, 2024

Download(s)

18
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric