Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/16065
Authors: Süer, Selin* 
Wiersberg, Thomas* 
Güleç, Nilgün* 
Grassa, Fausto* 
Title: Stable Isotope Evaluation of Geothermal Gases from the Kızıldere and Tekke Hamam Geothermal Fields, Western Anatolia, Turkey
Journal: Geosciences 
Series/Report no.: /12 (2022)
Publisher: MDPI
Issue Date: 2022
DOI: 10.3390/geosciences12120452
Keywords: geothermal field
source of gas
stable isotopes
thermogenic methane
Subject Classification05.09. Miscellaneous 
Abstract: Volatiles transported from the Earth’s interior to the surface through permeable faults provide insights on the gas composition of deep reservoirs, mixing and migration processes, and can also be applied as gas-geothermometer. Here, we present carbon (δ13C), hydrogen (δ2H) and nitrogen (δ15N) isotopic data of CO2, CH4, and N2 from gas samples collected from the Kızıldere and Tekke Hamam geothermal fields, located along the eastern segment of the Büyük Menderes Graben, Turkey. The stable isotopic composition of carbon (δ13C) ranges from +0.30 to +0.99‰ (PDB) for CO2 from Kızıldere and is slightly more variable (−0.95 to +1.3‰) in samples from Tekke Hamam. Carbon isotope data in combination with CO2/3He data reveal that ~97% (Tekke Hamam) to ~99% (Kızıldere) of CO2 derives from limestone sources, with the residual CO2 being magmatic in origin with no evidence for CO2 from organic sources. The slightly higher contribution of limestone- derived CO2 in Kızıldere, compared to Tekke Hamam can be attributed to the higher temperatures of the Kızıldere reservoir and resulting amplified fluid–limestone interaction, as well as helium depletion during phase separation for Kızıldere samples. In contrast to the carbon isotopic composition of CO2, the δ13C values of methane from Kızıldere and Tekke Hamam are clearly distinct and vary between −23.6 and −20.8‰ for Kızıldere and −34.4 and −31.7‰ for Tekke Hamam, respectively. The δ2H-CH4 composition is also distinct, measured as −126.7‰ for Kızıldere and −143.3‰ for Tekke Hamam. CO2-CH4 carbon isotope geothermometry calculations based on the isotopic fractionation of δ13C between the dominant component CO2 and the minor component CH4 reveals temperatures 20–40 °C and 100–160 °C higher than the bottom–hole temperatures measured for Tekke Hamam and Kızıldere, respectively. Based on the CO2-CH4 carbon isotope disequilibrium, unusual high methane concentrations of ~0.3 to 0.4 vol.-% and CH4/3He-δ13C-CH4 relationships we suggest thermal decomposition of late (Tekke Hamam) to over-mature (Kızıldere) organic matter and, to some extent, also abiogenic processes as principal source of methane. The N2/36Ar ratios of most samples reveal the existence of a non–atmospheric nitrogen component within the gas mixture issuing from both fields, in addition to a constant contribution of atmospheric derived nitrogen accompanied into the system via the meteoric recharge of the geothermal system. Based on the δ15N isotopic ratios (varying between −4.44‰ and 4.54‰), the non–atmospheric component seems to be a mixture of both sedimentary (crustal organic) and mantle nitrogen. The thick Pliocene sedimentary sequence covering the metamorphic basement is the likely major source for the thermogenic content of CH4 and crustal N2 gas content in the samples.
Appears in Collections:Article published / in press

Files in This Item:
File Description SizeFormat
Suer et al, Geosciences, 2022.pdfOpen Access published article3.17 MBAdobe PDFView/Open
Show full item record

Page view(s)

45
checked on Apr 24, 2024

Download(s)

10
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric