Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/16008
Authors: Palano, Mimmo* 
Sparacino, Federica* 
Gambino, Piera* 
D'Agostino, Nicola* 
Calcaterra, Stefano* 
Title: Slow slip events and flank instability at Mt. Etna volcano (Italy)
Journal: Tectonophysics 
Series/Report no.: /836 (2022)
Publisher: Elsevier B.V.
Issue Date: 5-Aug-2022
DOI: 10.1016/j.tecto.2022.229414
URL: https://www.sciencedirect.com/science/article/pii/S0040195122002086
Keywords: GNSS
Etna
Slow slip events
Abstract: We analyzed a set of 11 slow slip events occurred during the 2006–2016 period and affecting the GNSS (Global Navigation Satellite System) stations of the unstable flank of Mt. Etna volcano. Observed surface deformation for most of the detected slow slip events, concentrates on the south-eastern edge of the unstable flank while the slow slip events involving the north-eastern edge are less frequent. Such a pattern highlights the existence of two distinct families of events, involving two contiguous sectors of the unstable flank, which occasionally slip together in large slow slip events. The modelled slips also highlight that both contiguous sectors extend ~10–12 km offshore, on areas where active tectonic lineaments such as the ESE (northward of Catania Canyon) and the N102° (along the southern slope of the Riposto Ridge) ones have been recently discovered. Equivalent seismic moments of slow slip events occurred in the last ten years (corresponding to magnitudes in the range 5.4–5.9) are larger than those associated to seismic events observed in the last 200 years, suggesting that most of the deformation affecting the eastern flank occurs aseismically.
Appears in Collections:Article published / in press

Files in This Item:
File Description SizeFormat
TECTO-S-22-00051.pdfSubmitted version15.61 MBAdobe PDFView/Open
Show full item record

Page view(s)

111
checked on Apr 24, 2024

Download(s)

4
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric