Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/15677
DC FieldValueLanguage
dc.date.accessioned2022-07-08T10:16:03Z-
dc.date.available2022-07-08T10:16:03Z-
dc.date.issued2022-07-01-
dc.identifier.urihttp://hdl.handle.net/2122/15677-
dc.description.abstractVolcanic and Seismic source Modeling (VSM) is an open-source Python tool to model ground deformation. VSM allows the user to choose one or more deformation sources of various shapes as a forward model among sphere, spheroid, ellipsoid, rectangular dislocation, and sill. It supports multiple datasets from most satellite and terrestrial geodetic techniques: Interferometric SAR, GNSS, leveling, Electronic Distance Measurements, tiltmeters, and strainmeters. Two sampling algorithms are available: one is a global optimization algorithm based on the Voronoi cells and yields the best-fitting solution and the second follows a probabilistic approach to parameters estimation based on the Bayes theorem and the Markov chain Monte Carlo method. VSM can be executed as Python script, in Jupyter Notebook environments, or by its Graphical User Interface. Its broad applications range from high-level research to teaching, from single studies to near real-time hazard estimates. Potential users range from early-career scientists to experts. It is freely available on GitHub (https://github.com/EliTras/VSM) and is accompanied by step-by-step documentation in Jupyter Notebooks. This study presents the functionalities of VSM and test cases to describe its use and comparisons among possible settings.en_US
dc.description.sponsorshipThis work was jointly supported by the “Research Lifecycle Management technologies for Earth Science Communities and Copernicus users in EOSC” Reliance project funded by the European Commission’s H2020 2021-2022 (Grant Agreement no. 101017501); Pianeta Dinamico—Working Earth project (2020-2030) funded by the Italian Ministry of University and Research (Decree no. 1118 04/12/2019); and “Linking Surface Observables to sub-Volcanic Plumbing-System: A Multidisciplinary Approach for Eruption Forecasting at Campi Flegrei Caldera (Italy)” LOVE-CF (2020-2023) project funded by INGV (Internal Register no. 1865 17/07/2020).en_US
dc.language.isoEnglishen_US
dc.publisher.nameFrontiers Media S.A.en_US
dc.relation.ispartofFrontiers in Earth Scienceen_US
dc.relation.ispartofseries/10 (2022)en_US
dc.rightsAttribution-NonCommercial 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc/3.0/us/*
dc.subjectanalytical modelen_US
dc.subjectgeodetic dataen_US
dc.subjectnatural hazardsen_US
dc.subjectopen scienceen_US
dc.subjectinverse theoryen_US
dc.subjectInSARen_US
dc.titleVolcanic and Seismic Source Modeling: An Open Tool for Geodetic Data Modelingen_US
dc.typearticleen
dc.description.statusPublisheden_US
dc.type.QualityControlPeer-revieweden_US
dc.description.pagenumber917222en_US
dc.subject.INGV04.08. Volcanologyen_US
dc.subject.INGV04.03. Geodesyen_US
dc.subject.INGV04.06. Seismologyen_US
dc.identifier.doi10.3389/feart.2022.917222en_US
dc.relation.referencesAgnew, D. C. (1986). Strainmeters and Tiltmeters. Rev. Geophys. 24, 579–624. doi:10.1029/RG024i003p00579 CrossRef Full Text | Google Scholar Akaike, H. (1974). A New Look at the Statistical Model Identification. IEEE Trans. Autom. Contr. 19, 716–723. doi:10.1109/TAC.1974.1100705 CrossRef Full Text | Google Scholar Aloisi, M., Bonaccorso, A., Cannavò, F., Currenti, G., and Gambino, S. (2020). The 24 December 2018 Eruptive Intrusion at Etna Volcano as Revealed by Multidisciplinary Continuous Deformation Networks (CGPS, Borehole Strainmeters and Tiltmeters). JGR Solid Earth 125 (8), e2019JB019117. doi:10.1029/2019JB019117 CrossRef Full Text | Google Scholar Amoruso, A., Crescentini, L., Sabbetta, I., De Martino, P., Obrizzo, F., and Tammaro, U. (2014b). Clues to the Cause of the 2011-2013 Campi Flegrei Caldera Unrest, Italy, from Continuous GPS Data. Geophys. Res. Lett. 41, 3081–3088. doi:10.1002/2014GL059539 CrossRef Full Text | Google Scholar Amoruso, A., Crescentini, L., and Sabbetta, I. (2014a). Paired Deformation Sources of the Campi Flegrei Caldera (Italy) Required by Recent (1980-2010) Deformation History. J. Geophys. Res. Solid Earth 119, 858–879. doi:10.1002/2013JB010392 CrossRef Full Text | Google Scholar Antonella Amoruso, A., and Luca Crescentini, L. (2013). Analytical Models of Volcanic Ellipsoidal Expansion Sources. Ann. Geophys 56. doi:10.4401/ag-6441 CrossRef Full Text | Google Scholar Bagnardi, M., and Hooper, A. (2018). Inversion of Surface Deformation Data for Rapid Estimates of Source Parameters and Uncertainties: A Bayesian Approach. Geochem. Geophys. Geosyst. 19, 2194–2211. doi:10.1029/2018GC007585 CrossRef Full Text | Google Scholar Bailo, D., Paciello, R., Sbarra, M., Rabissoni, R., Vinciarelli, V., and Cocco, M. (2020). Perspectives on the Implementation of FAIR Principles in Solid Earth Research Infrastructures. Front. Earth Sci. 8, 3. doi:10.3389/feart.2020.00003 CrossRef Full Text | Google Scholar Bato, M. G., Pinel, V., and Yan, Y. (2017). Assimilation of Deformation Data for Eruption Forecasting: Potentiality Assessment Based on Synthetic Cases. Front. Earth Sci. 5, 48. doi:10.3389/feart.2017.00048 CrossRef Full Text | Google Scholar Battaglia, M., Cervelli, P. F., and Murray, J. R. (2013a). DMODELS: A MATLAB Software Package for Modeling Crustal Deformation Near Active Faults and Volcanic Centers. J. Volcanol. Geotherm. Res. 254, 1–4. doi:10.1016/j.jvolgeores.2012.12.018 CrossRef Full Text | Google Scholar Battaglia, M., Cervelli, P. F., and Murray, J. R. (2013b). Modeling Crustal Deformation Near Active Faults and Volcanic Centers—A Catalog of Deformation Models. Available at: http://pubs.er.usgs.gov/publication/tm13B1. Google Scholar Beauducel, F., Peltier, A., Villié, A., and Suryanto, W. (2020). Mechanical Imaging of a Volcano Plumbing System from GNSS Unsupervised Modeling. Geophys. Res. Lett. 47 (17), e2020GL089419. doi:10.1029/2020GL089419 CrossRef Full Text | Google Scholar Bianchi, I., Piana Agostinetti, N., De Gori, P., and Chiarabba, C. (2008). Deep Structure of the Colli Albani Volcanic District (Central Italy) from Receiver Functions Analysis. J. Geophys. Res. 113. doi:10.1029/2007JB005548 CrossRef Full Text | Google Scholar Biggs, J., Ebmeier, S. K., Aspinall, W. P., Lu, Z., Pritchard, M. E., Sparks, R. S. J., et al. (2014). Global Link between Deformation and Volcanic Eruption Quantified by Satellite Imagery. Nat. Commun. 5, 3471. doi:10.1038/ncomms4471 PubMed Abstract | CrossRef Full Text | Google Scholar Biggs, J., and Wright, T. J. (2020). How Satellite InSAR Has Grown from Opportunistic Science to Routine Monitoring over the Last Decade. Nat. Commun. 11, 3863. doi:10.1038/s41467-020-17587-6 PubMed Abstract | CrossRef Full Text | Google Scholar Bodin, T., Sambridge, M., Rawlinson, N., and Arroucau, P. (2012). Transdimensional Tomography with Unknown Data Noise. Geophys. J. Int. 189, 1536–1556. doi:10.1111/j.1365-246X.2012.05414.x CrossRef Full Text | Google Scholar Cannavò, F. (2019). A New User-Friendly Tool for Rapid Modelling of Ground Deformation. Comput. Geosciences 128, 60–69. doi:10.1016/j.cageo.2019.04.002 CrossRef Full Text | Google Scholar Cannavò, F., Camacho, A. G., González, P. J., Mattia, M., Puglisi, G., and Fernández, J. (2015). Real Time Tracking of Magmatic Intrusions by Means of Ground Deformation Modeling during Volcanic Crises. Sci. Rep. 5, 10970. doi:10.1038/srep10970 PubMed Abstract | CrossRef Full Text | Google Scholar Chen, B., Li, Z., Yu, C., Fairbairn, D., Kang, J., Hu, J., et al. (2020). Three-dimensional Time-Varying Large Surface Displacements in Coal Exploiting Areas Revealed through Integration of SAR Pixel Offset Measurements and Mining Subsidence Model. Remote Sens. Environ. 240, 111663. doi:10.1016/j.rse.2020.111663 CrossRef Full Text | Google Scholar Colesanti, C., and Wasowski, J. (2006). Investigating Landslides with Space-Borne Synthetic Aperture Radar (SAR) Interferometry. Eng. Geol. 88, 173–199. doi:10.1016/j.enggeo.2006.09.013 CrossRef Full Text | Google Scholar D’Auria, L., Pepe, S., Castaldo, R., Giudicepietro, F., Macedonio, G., Ricciolino, P., et al. (2015). Magma Injection beneath the Urban Area of Naples: A New Mechanism for the 2012-2013 Volcanic Unrest at Campi Flegrei Caldera. Sci. Rep. 5, 1–11. doi:10.1038/srep13100 CrossRef Full Text | Google Scholar Davis, P. M. (1986). Surface Deformation Due to Inflation of an Arbitrarily Oriented Triaxial Ellipsoidal Cavity in an Elastic Half-Space, with Reference to Kilauea Volcano, Hawaii. J. Geophys. Res. 91, 7429–7438. doi:10.1029/jb091ib07p07429 CrossRef Full Text | Google Scholar DeMets, C., Gordon, R. G., Argus, D. F., and Stein, S. (1990). Current Plate Motions. Geophys. J. Int. 101, 425–478. doi:10.1111/j.1365-246X.1990.tb06579.x CrossRef Full Text | Google Scholar Di Vito, M. A., Acocella, V., Aiello, G., Barra, D., Battaglia, M., Carandente, A., et al. (2016). Magma Transfer at Campi Flegrei Caldera (Italy) before the 1538 AD Eruption. Sci. Rep. 6, 32245. doi:10.1038/srep32245 PubMed Abstract | CrossRef Full Text | Google Scholar Eshelby, J. D. (1957). The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problems. Proc. R. Soc. Lond. A 241, 376–396. doi:10.1098/rspa.1957.0133 CrossRef Full Text | Google Scholar Fernández, J., Pepe, A., Poland, M. P., and Sigmundsson, F. (2017). Volcano Geodesy: Recent Developments and Future Challenges. J. Volcanol. Geotherm. Res. 344, 1–12. doi:10.1016/j.jvolgeores.2017.08.006 CrossRef Full Text | Google Scholar Fialko, Y., Khazan, Y., and Simons, M. (2001). Deformation Due to a Pressurized Horizontal Circular Crack in an Elastic Half-Space, with Applications to Volcano Geodesy. Geophys. J. Int. 146, 181–190. doi:10.1046/j.1365-246X.2001.00452.x CrossRef Full Text | Google Scholar Foreman-Mackey, D., Hogg, D. W., Lang, D., and Goodman, J. (2013). Emcee: The MCMC Hammer. Publ. Astronomical Soc. Pac. 125, 306–312. doi:10.1086/670067 CrossRef Full Text | Google Scholar Galloway, D. L., and Hoffmann, J. (2007). The Application of Satellite Differential SAR Interferometry-Derived Ground Displacements in Hydrogeology. Hydrogeol. J. 15, 133–154. doi:10.1007/s10040-006-0121-5 CrossRef Full Text | Google Scholar Garcia-Silva, A., Gomez-Perez, J. M., Palma, R., Krystek, M., Mantovani, S., Foglini, F., et al. (2019). Enabling FAIR Research in Earth Science through Research Objects. Future Gener. Comput. Syst. 98, 550–564. doi:10.1016/j.future.2019.03.046 CrossRef Full Text | Google Scholar Geman, S., and Geman, D. (1984). Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images. IEEE Trans. Pattern Anal. Mach. Intell. PAMI-6, 721–741. doi:10.1109/TPAMI.1984.4767596 PubMed Abstract | CrossRef Full Text | Google Scholar Goodman, J., and Weare, J. (2010). Commun. Appl. Math. Comput. Sci. Available at: https://msp.org/camcos/2010/5-1/camcos-v5-n1-p04-p.pdf. Google Scholar Hashimoto, C., Noda, A., Sagiya, T., and Matsu’ura, M. (2009). Interplate Seismogenic Zones along the Kuril-Japan Trench Inferred from GPS Data Inversion. Nat. Geosci. 2, 141–144. doi:10.1038/ngeo421 CrossRef Full Text | Google Scholar Heimann, S., Vasyura-Bathke, H., Sudhaus, H., Isken, M. P., Kriegerowski, M., Steinberg, A., et al. (2019). A Python Framework for Efficient Use of Pre-computed Green's Functions in Seismological and Other Physical Forward and Inverse Source Problems. Solid earth. 10, 1921–1935. doi:10.5194/se-10-1921-2019 CrossRef Full Text | Google Scholar Isaia, R., Vitale, S., Marturano, A., Aiello, G., Barra, D., Ciarcia, S., et al. (2019). High-resolution Geological Investigations to Reconstruct the Long-Term Ground Movements in the Last 15 Kyr at Campi Flegrei Caldera (Southern Italy). J. Volcanol. Geotherm. Res. 385, 143–158. doi:10.1016/j.jvolgeores.2019.07.012 CrossRef Full Text | Google Scholar Kennett, B. L. N., Marson-Pidgeon, K., and Sambridge, M. S. (2000). Seismic Source Characterization Using a Neighbourhood Algorithm. Geophys. Res. Lett. 27, 3401–3404. doi:10.1029/2000GL011559 CrossRef Full Text | Google Scholar Lisowski, M. (2007). “Analytical Volcano Deformation Source Models,” in Volcano Deformation (Berlin, Heidelberg: Springer), 279–304. doi:10.1007/978-3-540-49302-0_8 CrossRef Full Text | Google Scholar Lohman, R. B., and Simons, M. (2005). Some Thoughts on the Use of InSAR Data to Constrain Models of Surface Deformation: Noise Structure and Data Downsampling. Geochem. Geophys. Geosyst. 6, a–n. doi:10.1029/2004GC000841 CrossRef Full Text | Google Scholar Masterlark, T. (2007). Magma Intrusion and Deformation Predictions: Sensitivities to the Mogi Assumptions. J. Geophys. Res. 112. doi:10.1029/2006JB004860 CrossRef Full Text | Google Scholar McTigue, D. F. (1987). Elastic Stress and Deformation Near a Finite Spherical Magma Body: Resolution of the Point Source Paradox. J. Geophys. Res. 92, 12931. doi:10.1029/jb092ib12p12931 CrossRef Full Text | Google Scholar Mindlin, R. D. (1936). Force at a Point in the Interior of a Semi‐Infinite Solid. Physics 7, 195–202. doi:10.1063/1.1745385 CrossRef Full Text | Google Scholar Mogi, K. (1958). Relations between the Eruptions of Various Volcanoes and the Deformations of the Ground Surfaces Around Them. Bull. Earthq. Res. Inst. 36, 99–134. Google Scholar Morishita, Y., Lazecky, M., Wright, T., Weiss, J., Elliott, J., and Hooper, A. (2020). LiCSBAS: An Open-Source Insar Time Series Analysis Package Integrated with the LiCSAR Automated Sentinel-1 InSAR Processor. Remote Sens. 12, 424. doi:10.3390/rs12030424 CrossRef Full Text | Google Scholar Mosegaard, K., and Tarantola, A. (1995). Monte Carlo Sampling of Solutions to Inverse Problems. J. Geophys. Res. 100, 12431–12447. doi:10.1029/94jb03097 CrossRef Full Text | Google Scholar Nikkhoo, M., and Rivalta, E. (2022). Analytical Solutions for Gravity Changes Caused by Triaxial Volumetric Sources. Geophys. Res. Lett. 49, 1–17. doi:10.1029/2021gl095442 CrossRef Full Text | Google Scholar Nikkhoo, M., Walter, T. R., Lundgren, P. R., and Prats-Iraola, P. (2017). Compound Dislocation Models (CDMs) for Volcano Deformation Analyses. Geophys. J. Int. 208, 877–894. doi:10.1093/gji/ggw427 CrossRef Full Text | Google Scholar Okada, Y. (1985). Surface Deformation Due to Shear and Tensile Faults in a Half-Space. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 75, 1135–1154. doi:10.1785/bssa0750041135 CrossRef Full Text | Google Scholar Orsi, G., De Vita, S., and Di Vito, M. (1996). The Restless, Resurgent Campi Flegrei Nested Caldera (Italy): Constraints on its Evolution and Configuration. J. Volcanol. Geotherm. Res. 74, 179–214. doi:10.1016/S0377-0273(96)00063-7 CrossRef Full Text | Google Scholar Orsi, G. (2022). “Volcanic and Deformation History of the Campi Flegrei Volcanic Field, Italy,” in Active Volcanoes of the World, 1–53. doi:10.1007/978-3-642-37060-1_1 CrossRef Full Text | Google Scholar Poland, M. P., and de Zeeuw-van Dalfsen, E. (2021). “Volcano Geodesy: A Critical Tool for Assessing the State of Volcanoes and Their Potential for Hazardous Eruptive Activity,” in Forecasting and Planning for Volcanic Hazards, Risks, and Disasters (Amsterdam, Netherlands: Elsevier), 75–115. doi:10.1016/b978-0-12-818082-2.00003-2 CrossRef Full Text | Google Scholar Reading, A., Kennett, B., and Sambridge, M. (2003). Improved Inversion for Seismic Structure Using transformed,S-Wavevector Receiver Functions: Removing the Effect of the Free Surface. Geophys. Res. Lett. 30 (19). doi:10.1029/2003GL018090 CrossRef Full Text | Google Scholar Rosi, M., and Sbrana, A. (1987). The Phlegrean Fields. Rome: Quaderni “La Ricerca Scientifica”CNR. Google Scholar Rouet-Leduc, B., Jolivet, R., Dalaison, M., Johnson, P. A., and Hulbert, C. (2021). Autonomous Extraction of Millimeter-Scale Deformation in InSAR Time Series Using Deep Learning. Nat. Commun. 12, 6480. doi:10.1038/s41467-021-26254-3 PubMed Abstract | CrossRef Full Text | Google Scholar Sambridge, M. (1999b). Geophysical Inversion with a Neighbourhood Algorithm-II. Appraising the Ensemble. Geophys. J. Int. 138, 727–746. doi:10.1046/j.1365-246x.1999.00900.x CrossRef Full Text | Google Scholar Sambridge, M. (1999a). Geophysical Inversion with a Neighbourhood Algorithm-I. Searching a Parameter Space. Geophys. J. Int. 138, 479–494. doi:10.1046/j.1365-246X.1999.00876.x CrossRef Full Text | Google Scholar Saroli, M., Albano, M., Atzori, S., Moro, M., Tolomei, C., Bignami, C., et al. (2021). Analysis of a Large Seismically Induced Mass Movement after the December 2018 Etna Volcano (Southern Italy) Seismic Swarm. Remote Sens. Environ. 263, 112524. doi:10.1016/j.rse.2021.112524 CrossRef Full Text | Google Scholar Segall, P. (2010). Earthquake and Volcano Deformation. New Jersey, United States: Princeton Univeristy Press. doi:10.1515/9781400833856 CrossRef Full Text | Google Scholar Shirzaei, M., and Bürgmann, R. (2018). Global Climate Change and Local Land Subsidence Exacerbate Inundation Risk to the San Francisco Bay Area. Sci. Adv. 4, eaap9234. doi:10.1126/sciadv.aap9234 PubMed Abstract | CrossRef Full Text | Google Scholar Silverii, F., Pulvirenti, F., Montgomery-Brown, E. K., Borsa, A. A., and Neely, W. R. (2021). The 2011-2019 Long Valley Caldera Inflation: New Insights from Separation of Superimposed Geodetic Signals and 3D Modeling. Earth Planet. Sci. Lett. 569, 117055. doi:10.1016/j.epsl.2021.117055 CrossRef Full Text | Google Scholar Snoke, J. A. (2002). Constraints on theSwave Velocity Structure in a Continental Shield from Surface Wave Data: Comparing Linearized Least Squares Inversion and the Direct Search Neighbourhood Algorithm. J. Geophys. Res. 107 (B5), ESE 4-1–ESE 4-8. doi:10.1029/2001jb000498 CrossRef Full Text | Google Scholar Sparks, R. S., Biggs, J., and Neuberg, J. W. (2012). Geophysics. Monitoring Volcanoes. Science 335, 1310–1311. doi:10.1126/science.1219485 PubMed Abstract | CrossRef Full Text | Google Scholar Sudhaus, H., and Jónsson, S. (2009). Improved Source Modelling through Combined Use of InSAR and GPS under Consideration of Correlated Data Errors: Application to the June 2000 Kleifarvatn Earthquake, Iceland. Geophys. J. Int. 176, 389–404. doi:10.1111/j.1365-246X.2008.03989.x CrossRef Full Text | Google Scholar Tarantola, A. (1987). Inverse Problem Theory: Methods for Data Fitting and Model Parameter Estimation. Amsterdam: Elsevier Science, 644. Trasatti, E., Bonafede, M., Ferrari, C., Giunchi, C., and Berrino, G. (2011). On Deformation Sources in Volcanic Areas: Modeling the Campi Flegrei (Italy) 1982-84 Unrest. Earth Planet. Sci. Lett. 306, 175–185. doi:10.1016/j.epsl.2011.03.033 CrossRef Full Text | Google Scholar Trasatti, E., and Bonafede, M. (2008). Gravity Changes Due to Overpressure Sources in 3D Heterogeneous Media: Application to Campi Flegrei Caldera, Italy. Ann. Geophys. 51, 121–135. doi:10.4401/ag-4442 CrossRef Full Text | Google Scholar Trasatti, E., Giunchi, C., and Bonafede, M. (2003). Effects of Topography and Rheological Layering on Ground Deformation in Volcanic Regions. J. Volcanol. Geotherm. Res. 122, 89–110. doi:10.1016/S0377-0273(02)00473-0 CrossRef Full Text | Google Scholar Trasatti, E., Polcari, M., Bonafede, M., and Stramondo, S. (2015). Geodetic Constraints to the Source Mechanism of the 2011-2013 Unrest at Campi Flegrei (Italy) Caldera. Geophys. Res. Lett. 42, 3847–3854. doi:10.1002/2015gl063621 CrossRef Full Text | Google Scholar Trasatti, E., and Tolomei, C. (2022). Modelling of the Magnitude 7.1 2011 Van Earthquake (Turkey) from Remote Sensing and GPS Data. Poznan, Poland: ROHub, Poznań Supercomputing and Networking Center. doi:10.24424/dxfh-x940 CrossRef Full Text | Google Scholar Trasatti, E. (2022). Volcanic and Seismic Source Modelling (VSM) the Python Toolkit for Modelling Geodetic Data. Poznan, Poland: ROHub, Poznań Supercomputing and Networking Center. doi:10.24424/T83F-5T97 CrossRef Full Text | Google Scholar Trasatti, E. (2019). Volcano and Seismic Source Modelling –VSM. Poznan, Poland: ROHub, Poznań Supercomputing and Networking Center. Google Scholar Vasyura-Bathke, H., Dettmer, J., Steinberg, A., Heimann, S., Isken, M. P., Zielke, O., et al. (2020). The Bayesian Earthquake Analysis Tool. Seismol. Res. Lett. 91, 1003–1018. doi:10.1785/0220190075 CrossRef Full Text | Google Scholar Voronoi, G. (1908). Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Premier mémoire. Sur quelques propriétés des formes quadratiques positives parfaites. fur Reine Angew. Math. 1908, 97–102. doi:10.1515/crll.1908.133.97 CrossRef Full Text | Google Scholar Wells, D. L., and Coppersmith, K. J. (1994). New Empirical Relationships Among Magnitude, Rupture Length, Rupture Width, Rupture Area, and Surface Displacement. Bull. - Seismol. Soc. Am. 84, 974–1002. Google Scholar Weston, J., Ferreira, A. M. G., and Funning, G. J. (2011). Global Compilation of Interferometric Synthetic Aperture Radar Earthquake Source Models: 1. Comparisons with Seismic Catalogs. J. Geophys. Res. 116. doi:10.1029/2010JB008131 CrossRef Full Text | Google Scholar Wilkinson, M. D., Dumontier, M., Aalbersberg, I. J., Appleton, G., Axton, M., Baak, A., et al. (2016). The FAIR Guiding Principles for Scientific Data Management and Stewardship. Sci. Data 3, 160018–160019. doi:10.1038/sdata.2016.18 PubMed Abstract | CrossRef Full Text | Google Scholar Wright, T. J., Parsons, B., England, P. C., and Fielding, E. J. (2004). InSAR Observations of Low Slip Rates on the Major Faults of Western Tibet. Science 305, 236–239. doi:10.1126/science.1096388 PubMed Abstract | CrossRef Full Text | Google Scholar Yang, X.-M., Davis, P. M., and Dieterich, J. H. (1988). Deformation from Inflation of a Dipping Finite Prolate Spheroid in an Elastic Half-Space as a Model for Volcanic Stressing. J. Geophys. Res. 93, 4249–4257. doi:10.1029/JB093iB05p04249en_US
dc.description.obiettivoSpecifico4V. Processi pre-eruttivien_US
dc.description.journalTypeJCR Journalen_US
dc.relation.issn2296-6463en_US
dc.contributor.authorTrasatti, Elisa-
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italiaen_US
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.orcid0000-0002-2983-045X-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat
VSM_frontiers_2022.pdfOpen Access published article3.61 MBAdobe PDFView/Open
Show simple item record

Page view(s)

367
checked on Apr 24, 2024

Download(s)

186
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric