Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/15474
DC FieldValueLanguage
dc.date.accessioned2022-02-25T07:43:17Z-
dc.date.available2022-02-25T07:43:17Z-
dc.date.issued2021-03-19-
dc.identifier.urihttp://hdl.handle.net/2122/15474-
dc.description.abstractWe simulate the deformation of Somma-Vesuvius volcano due to some overpressure sources by means of a finite element 3D code. The main goal of these simulations is to investigate the influence of topography and structural heterogeneity on ground deformation. In our model the sources of deformation are embedded in an elastic linear isotropic medium and located at various depths. Geometry (shape and lateral extension) of the sources is mainly constrained by the results coming from recent seismic tomography studies. The structural heterogeneity has been modelled in terms of dynamic elastic parameters (Young’s modulus) retrieved from previous seismic tomography and gravity studies. A highresolution digital terrain model is used for the topography of the volcano subaerial edifice. Evidences from our results suggest that real topography and structural heterogeneities are key factors governing the ground deformation, which often turns being one of the most relevant problems in volcano monitoring. A large deviation from the axially symmetrical model of the displacement field is the main result of our modelling. Such an asymmetry is routinely unaccounted for when Mogi’s simplistic modelling in a homogeneous medium with simplified topography is used. Our study clearly demonstrate that a better knowledge of deformation patterns can significantly help in the location of monitoring sensors as well as in the design of an efficient geodetic network.en_US
dc.language.isoEnglishen_US
dc.publisher.nameEgu-Copernicusen_US
dc.relation.ispartofAdvances in Geosciences (ADGEO)en_US
dc.relation.ispartofseries/52 (2021)en_US
dc.titleTopography and structural heterogeneities in surface ground deformation: a simulation test for Somma-Vesuvius volcanoen_US
dc.typearticleen
dc.description.statusPublisheden_US
dc.type.QualityControlPeer-revieweden_US
dc.description.pagenumber145-152en_US
dc.identifier.URLhttps://adgeo.copernicus.org/articles/52/145/2021/en_US
dc.identifier.doi10.5194/adgeo-52-145-2021en_US
dc.relation.referencesBianco, F., Castellano, M., Milano, G., Ventura, G., and Vilardo, G.: The Somma-Vesuvius stress field induced by regional tectonics: Evidences from seismological and mesostructural data, in: Special Issue Vesuvius, edited by: Spera, F. J., De Vivo, B., Ayuso, R. A., and Belkin, H. E., J. Volcanol. Geoth. Res., 82, 199–218, https://doi.org/10.1016/S0377-0273(97)00065-6, 1998. Bianco, F., Castellano, M., Milano, G., Vilardo, G., Ferrucci, F., and Gresta, S.: The seismic crises at Mt. Vesuvius during 1995 and 1996, Phys. Chem. Earth (A), 24, 977–983, 1999. Capuano, P., Gasparini, P., Virieux, J., Zollo, A., Casale, R., and Yeroyanni, M.: The Internal Structure of Mt. Vesuvius: A Seismic Tomography Investigation, Liguori Editore, Napoli, 595 pp., ISBN 88-207-3503-2, 2003. Capuano, P., Russo, G., and Scarpa, R.: P-wave velocity and density structure beneath Mt. Vesuvius: a magma body in the upper edifice?, Ann. Geophys.-Italy, 54, S0437–S0447, https://doi.org/10.4401/ag-6443, 2013. Chiodini, G., Marini, L., and Russo, M.: Geochemical evidences of high temperature hydrothermal brines at Vesuvio volcano (Italy), Geochim. Cosmochim. Ac., 65, 2129–2147, 2001. Cubellis, E., Luongo, G., and Marturano, A.: Seismic hazard assessment at Mt. Vesuvius: the maximum magnitude expected, J. Volcanol. Geoth. Res., 162, 139–149, https://doi.org/10.1016/j.jvolgeores.2007.03.003, 2007. Currenti, G., Del Negro, C., and Ganci, G.: Modelling of ground deformation and gravity fields using finite element method: an application to Etna volcano, Geophys. J. Int., 169, 775–786, https://doi.org/10.1111/j.1365-246X.2007.03380.x, 2007. Del Pezzo, E., Bianco, F., and Saccorotti, G.: Seismic Source Dynamics at Vesuvius Volcano, Italy, J. Volcanol. Geoth. Res., 133, 23–39, 2004. De Natale, G., Capuano, P., Troise, C., and Zollo, A.: Seismicity at Somma-Vesuvius and its implications for the 3D tomography of the volcano, in: Special Issue Vesuvius, edited by: Spera, F. J., De Vivo, B., Ayuso, R. A., and Belkin, H. E., J. Volcanol. Geoth. Res., 82, 175–197, 1998. De Natale, G., Troise, C., Trigila, R., Dolfi, D., and Chiarabba, C.: Seismicity and 3D substructure at Somma-Vesuvius volcano: evidence for magma quenching, Earth Plan. Sci. Lett., 221, 181–196, 2004. Dvorak, J. and Dzurisin, D.: Volcano Geodesy: the search for magma reservoirs and the formation of eruptive vents, Rev. Geophys., 35, 343–384, https://doi.org/10.1029/97RG00070, 1997. Dzurisin, D.: Volcano geodesy: Challenges and opportunities for the 21st century, Phil. Trans. R. Soc. Lond. A, 358, 1547–1566, https://doi.org/10.1098/rsta.2000.0603, 2000. Dzurisin, D.: A comprehensive approach to monitoring volcano deformation as a window on the eruption cycle, Rev. Geophys., 41, 1001, 1–29, https://doi.org/10.1029/2001RG000107, 2003. Galluzzo, D., Del Pezzo, E., La Rocca, M., and Petrosino, S.: Peak Ground Acceleration produced by local earthquakes in volcanic areas of Campi Flegrei and Mt. Vesuvius, Ann. Geophys.-Italy, 47, 1377–1390, 2004. Gasparini, P. and The TomoVes Project Field Team, TomoVes: A project of seismic investigation of Mt.Vesuvius, EOS, 79, 229–232, 1998. Landi, P., Bertagnini, A., and Rosi, M.: Chemical zoning and crystallization mechanisms in the magma chamber of the Pomici di Base plinian eruption of Somma-Vesuvius (Italy), Contrib. Mineral. Petrol., 135, 179–197, https://doi.org/10.1007/s004100050505, 1999. Mastrolorenzo, G., Palladino, D., Vecchio, G., and Taddeucci, J.: The 472 A.D. Pollena eruption of Somma-Vesuvius (Italy) and its environmental impact at the end of the Roman Empire, J. Volcanol. Geoth. Res., 113, 19–36, 2002. Meo, M., Tammaro, U., and Capuano, P.: Influence of topography on ground deformation at Mt. Vesuvius (Italy) by finite element modelling, Int. J. Nonlin. Mech., 43, 178–186, https://doi.org/10.1016/j.ijnonlinmec.2007.12.005, 2008. Mogi, K.: Relations between the Eruptions of Various Volcanoes and the Deformations of the Ground Surfaces around them, B. Earthq. Res. I. Tokyo, 36, 99–134, 1958. Pennetta, M.: Beach Erosion in the Gulf of Castellammare di Stabia in Response to the Trapping of Longshore Drifting Sediments of the Gulf of Napoli (Southern Italy), Geosciences, 8, 235, https://doi.org/10.3390/geosciences8070235, 2018. Pingue, F., Bottiglieri, M., Godano, C., Obrizzo, F., Tammaro, U., Esposito, T., and Serio, C.: Spatial and temporal distribution of vertical ground movements at Mt. Vesuvius in the period 1973–2009, Ann. Geophys.-Italy, 56, 4, S0451, https://doi.org/10.4401/ag-6457, 2013. Rolandi, G., Bellucci, F., and Cortini, M.: A new model for formation of the Somma Caldera, Miner. Petrol., 80, 27–44, https://doi.org/10.1007/s00710-003-0018-0, 2004. Tammaro, U., De Martino, P., Obrizzo, F., Brandi, G., D’Alessandro, A., Dolce, M., Malaspina, S., Serio, C., and Pingue, F.: Somma Vesuvius volcano: ground deformations from CGPS observations (2001–2012), Ann. Geophys.-Italy, 56, S0456; https://doi.org/10.4401/ag-6462, 2013. Zollo, A., Gasparini, P., Virieux, J., Le Meur, H., De Natale, G., Biella, G., Boschi, E., Capuano, P., De Franco, R., Dell’Aversana, P., De Matteis, R., Guerra, I., Iannaccone, G., Mirabile, L., and Vilardo, G.: Seismic evidence for a low velocity zone in the upper crust beneath Mount Vesuvius, Science, 274, 592–594, 1996.en_US
dc.description.obiettivoSpecifico4V. Processi pre-eruttivien_US
dc.description.journalTypeN/A or not JCRen_US
dc.relation.issn1680-7340en_US
dc.contributor.authorTammaro, Umberto-
dc.contributor.authorRiccardi, Umberto-
dc.contributor.authorRomano, Vittorio-
dc.contributor.authorMeo, Michele-
dc.contributor.authorCapuano, Paolo-
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italiaen_US
dc.contributor.departmentUniversità Federico II di Napoli, Dipartimento di Scienze della Terra, dell'Ambiente e delle Risorse, Napoli, Italia.en_US
dc.contributor.departmentUniversità di Salerno, Dipartimento di Ingegneria Industriale, Fisciano, Salerno, Italia.en_US
dc.contributor.departmentUniversity of Bath, Department of Mechanical Engineering, BA27AY Bath, UK.en_US
dc.contributor.departmentUniversità di Salerno, Dipartimento di Fisica "E.R. Caianiello", Fisciano, Salerno, Italia.en_US
item.cerifentitytypePublications-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.openairetypearticle-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptDipartimento di Scienze della Terra, Università “Federico II” di Napoli-
crisitem.author.deptDept. Ingegneria Industriale, Università degli Studi di Salerno,-
crisitem.author.deptUniversity of Bath, Department of Mechanical Engineering, BA27AY Bath, UK.-
crisitem.author.deptUniversità degli Studi di Salerno-
crisitem.author.orcid0000-0002-2685-6064-
crisitem.author.orcid0000-0003-0720-5415-
crisitem.author.orcid0000-0003-1633-8930-
crisitem.author.orcid0000-0002-6074-6977-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat
2021_Tammaro_et_al_adgeo-52-145.pdfOpen Access published article3.04 MBAdobe PDFView/Open
Show simple item record

Page view(s)

95
checked on May 1, 2024

Download(s)

6
checked on May 1, 2024

Google ScholarTM

Check

Altmetric