Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/15170
DC FieldValueLanguage
dc.date.accessioned2021-12-22T09:38:32Z-
dc.date.available2021-12-22T09:38:32Z-
dc.date.issued2021-01-28-
dc.identifier.urihttp://hdl.handle.net/2122/15170-
dc.description.abstractLa Palma island is one of the highest potential risks in the volcanic archipelago of the Canaries and therefore it is important to carry out an in-depth study to define its state of unrest. This has been accomplished through the use of satellite radar observations and an original state-of-the-art interpretation technique. Here we show the detection of the onset of volcanic unrest on La Palma island, most likely decades before a potential eruption. We study its current evolution seeing the spatial and temporal changing nature of activity at this potentially dangerous volcano at unprecedented spatial resolutions and long time scales, providing insights into the dynamic nature of the associated volcanic hazard. The geodetic techniques employed here allow tracking of the fluid migration induced by magma injection at depth and identifying the existence of dislocation sources below Cumbre Vieja volcano which could be associated with a future flank failure. Therefore they should continue being monitored using these and other techniques. The results have implications for the monitoring of steep-sided volcanoes at oceanic islands.en_US
dc.description.sponsorshipThis research was mainly funded by the Spanish Ministerio de Ciencia, Innovación y Universidades research project DEEP-MAPS, Grant Agreement Number RTI2018-093874-B-I00. It was also partially supported by the CSIC project 201530E019, and the project GEOSIR, Grant Agreement AYA2010-17448 from the Spanish Ministerio de Ciencia e Innovación and the MINECO research project CGL2017-86241-R. This work represents a contribution to CSIC Thematic Interdisciplinary Platform PTI TELEDETECT.en_US
dc.language.isoEnglishen_US
dc.publisher.nameSpringer Nature Limiteden_US
dc.relation.ispartofScientific Reportsen_US
dc.relation.ispartofseries/11 (2021)en_US
dc.subjectunresten_US
dc.subjectgeodesyen_US
dc.subjectearthquakesen_US
dc.subjectgas emissionen_US
dc.subjectLa Palmaen_US
dc.titleDetection of volcanic unrest onset in La Palma, Canary Islands, evolution and implicationsen_US
dc.typearticleen
dc.description.statusPublisheden_US
dc.type.QualityControlPeer-revieweden_US
dc.description.pagenumber2540en_US
dc.identifier.URLhttps://www.nature.com/articles/s41598-021-82292-3en_US
dc.subject.INGV04.08. Volcanologyen_US
dc.identifier.doi10.1038/s41598-021-82292-3en_US
dc.relation.references1. Fernández, J., González, P. J., Camacho, A. G., Prieto, J. F. & Brú, G. An Overview of geodetic volcano research in the Canary Islands. Pure Appl. Geophys. 172, 3189–3228 (2015). 2. Martí, J. et al. Causes and mechanisms of the 2011–2012 El Hierro (Canary Islands) submarine eruption. J. Geophys. Res. Solid Earth 118, 823–839 (2013). 3. Martí, J., Ortiz, R., Gottsmann, J., Garcia, A. & De La Cruz-Reyna, S. Characterising unrest during the reawakening of the central volcanic complex on Tenerife, Canary Islands, 2004–2005, and implications for assessing hazards and risk mitigation. J. Volcanol. Geotherm. Res. 182, 23–33 (2009). 4. Torres-González, P. A. et al. Unrest signals after 46 years of quiescence at Cumbre Vieja, La Palma, Canary Islands. J. Volcanol. Geotherm. Res. 392, 106757 (2020). 5. Staudigel, H., Feraud, G. & Giannerini, G. The history of intrusive activity on the Island of La Palma (Canary Islands). J. Volcanol. Geotherm. Res. 27, 299–322 (1986). 6. Ancochea, E. et al. Constructive and destructive episodes in the building of a young Oceanic Island, La Palma, Canary Islands, and genesis of the Caldera de Taburiente. J. Volcanol. Geotherm. Res. 60, 243–262 (1994). 7. Carracedo, J. C., Badiola, E. R., Guillou, H., De la Nuez, J. & PérezTorrado, F. J. Geology and volcanology of La Palma and El Hierro, Western Canaries. Estudios Geol. 57, 175–273 (2001). 8. De la Nuez, J. El Complejo intrusivo subvolcánico de la Caldera de Taburiente. Thesis, Universidad Complutense de Madrid, Madrid, Spain (1984). 9. Staudigel, H. & Schmincke, H.-U. The Pliocene seamount series of La Palma/Canary Islands. J. Geophys. Res. 89, 11195–11215 (1984). 10. Urgeles, R., Masson, D. G., Canals, M., Watts, A. B. & Le Bas, T. Recurrent large-scale landsliding on the west flank of La Palma, Canary Islands. J. Geophys. Res. 104, 25331–25348 (1999). 11. Hernández-Pacheco, A. & Valls, M. C. The historic eruption of La Palma Island (Canaries Arquipelago). Arquipelago, Univ. dos Açores. Série Ciências da Natureza 3, 83–94 (1982). 12. Ward, S. N. & Day, S. J. Cumbre Vieja volcano-potential collapse and tsunami at La Palma, Canary Islands. Geophys. Res. Lett. 28, 3397–3400 (2001). 13. González, P. J. et al. Magma storage and migration associated with the 2011–2012 El Hierro eruption: implications for crustal magmatic systems at oceanic island volcanoes. J. Geophys. Res. Solid Earth 118, 4361–4377 (2013). 14. Hu, Z. & Mallorquí, J. J. An accurate method to correct atmospheric phase delay for insar with the era5 global atmospheric model. Remote Sens. 11, 1969 (2019). 15. Hu, Z. Atmospheric Artifacts Correction for InSAR Using Empirical Model and Numerical Weather Prediction Models. Thesis, Universitat Politècnica de Catalunya, Barcelona, Spain (2019). 16. Fernández, J. et al. Modeling the two- and three-dimensional displacement field in Lorca, Spain, subsidence and the global implications. Sci. Rep. 8, 14782 (2018). 17. Escayo, J. et al. Geodetic study of the 2006–2010 ground deformation in La Palma (Canary Islands). Observation results. Remote Sens. 12, 2566 (2020). 18. Fernández, J., Pepe, A., Poland, M. P. & Sigmundsson, F. Volcano geodesy: recent developments and future challenges. J. Volcanol. Geotherm. Res. 344, 1–12 (2017). 19. Camacho, A. G., Fernández, J., Samsonov, S. V., Tiampo, K. F. & Palano, M. 3D multi-source modell of elastic volcanic ground deformations. Earth Planet. Sci. Lett. 547, 116445 (2020). 20. Camacho, A. G. et al. Structural results for La Palma Island using 3-D gravity inversion. J. Geophys. Res. 114, B05411 (2009). 21. Prieto, J. F. et al. Geodetic and structural research in La Palma, Canary Islands, Spain: 1994–2007 results. Pure Appl. Geophys. 166, 1461–1484 (2009). 22. Instituto Geográfico Nacional. Centro Nacional de Información Geográfica. Available at: http://ign.es 23. Blanco-Sánchez, P., Mallorquí, J. J., Duque, S. & Monells, D. The coherent pixels technique (CPT): an advanced DInSAR technique for nonlinear deformation monitoring. Pure Appl. Geophys. 165, 1167–1193 (2008). 24. Samsonov, S. & d’Oreye, N. Multidimensional Small Baseline Subset (MSBAS) for two-dimensional deformation analysis: case study Mexico city. Can. J. Remote Sens. 43, 318–329 (2017). 25. Camacho, A. G., Fernández, J. & Gottsmann, J. A new gravity inversion method for multiple subhorizontal discontinuity interfaces and shallow basins. J. Geophys. Res. 116, B02413 (2011). 26. González, P. J., Tiampo, K. F., Camacho, A. G. & Fernández, J. Shallow flank deformation at Cumbre Vieja volcano (Canary Islands): implications on the stability of steep-side volcano flanks at oceanic islands. Earth Planet. Sci. Lett. 297, 545–557 (2010). 27. Padrón, E. et al. Dynamics of diffuse carbon dioxide emissions from Cumbre Vieja volcano, La Palma, Canary Islands. Bull. Volcanol. 77, 28 (2015). 28. Hansteen, T. H., Klüegel, A. & Schmincke, H.-U. Multi-stage magma ascent beneath the Canary Islands: evidence from fluid inclusions. Contrib. Mineral. Petrol. 132, 48–64 (1998). 29. Klügel, A., Hoernle, K. A., Schmincke, H.-U. & White, J. D. L. The chemical zoned 1949 eruption on La Palma (Canary Islands): petrologic evolution and magma supply dynamics of a rift zone eruption. J. Geophys. Res. Solid Earth 105, 5997–6016 (2000). 30. Klügel, A., Hansteen, T. H. & Galipp, K. Magma storage and underplating beneath Cumbre Vieja volcano, La Palma (Canary Islands). Earth Planet. Sci. Lett. 236, 211–226 (2005). 31. Lodge, A., Nippress, S. E. J., Rietbrock, A., García-Yeguas, A. & Ibañez, J. M. Evidence for magmatic underplating and partial melt beneath the Canary Islands derived using teleseismic receiver functions. Phys. Earth Planet. Inter. 212–213, 44–54 (2012). 32. McNutt, S. R. & Roman, D. C. Volcanic Seismicity. In The Encyclopedia of Volcanoes, 1011–1034. https://doi.org/10.1016/B978-0-12-385938-9.00059-6 (2015). 33. Klügel, A., Schmincke, H.-U., White, J. D. L. & Hoernele, K. A. Chronology and volcanology of the 1949 multi-vent rift-zone eruption on La Palma (Canary Islands). J. Volcanol. Geotherm. Res. 94, 267–282 (1999). 34. Romero-Ortíz, J. & Bonelli-Rubio, J. M. “La erupción del Nambroque (Junio-Agosto de 1949).” (Talleres del Instituto Geográfico y Catastral. Comisión Nacional de Geodesia y Geofísica. Madrid, 1951). 35. Fisher, R. V. & Schmincke, H.-U. Pyroclastic Rocks (Springer, Berlin, 1984). https://doi.org/10.1029/eo066i009p00092-03 36. Galipp, K., Klügel, A. & Hansteen, T. H. Changing depths of magma fractionation and stagnation during the evolution of an oceanic island volcano: La Palma (Canary Islands). J. Volcanol. Geotherm. Res. 155, 285–306 (2006). 37. Malengreau, B., Lénat, J.-F. & Froger, J.-F. Structure of Réunion Island (Indian Ocean) inferred from the interpretation of gravity anomalies. J. Volcanol. Geotherm. Res. 88, 131–146 (1999). 38. Parker, A. L., Biggs, J. & Lu, A. Time-scale and mechanism of subsidence at Lassen Volcanic Center, CA, from InSAR. J. Volcanol. Geotherm. Res. 320, 117–127 (2016). 39. Walker, G. P. L. Volcanic rift zones and their intrusion swarms. J. Volcanol. Geotherm. Res. 94, 21–34 (1999). 40. Gottsmann, J. et al. New evidence for the reawakening of Teide volcano. Geophys. Res. Lett. 33, L20311 (2006). 41. Prutkin, I., Vajda, P. & Gottsmann, J. The gravimetric picture of magmatic and hydrothermal sources driving hybrid unrest on Tenerife in 2004/5. J. Volcanol. Geotherm. Res. 282, 9–18 (2014). 42. Wegmüller, U. & Werner, C. Gamma SAR processor and interferometry software. Eur. Sp. Agency, Special Publ. ESA SP (1997). 43. Goldstein, R. & Werner, C. Radar interferogram filtering for geophysical applications. Geophys. Res. Lett. 25, 4035–4038 (1998). 44. Costantini, M. A novel phase unwrapping method based on network programming. IEEE Trans. Geosci. Remote Sens. 36, 813–821 (1998). 45. Ferretti, A., Prati, C. & Rocca, F. Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry. IEEE Trans. Geosci. Remote Sens. 38, 2202–2212 (2000). 46. Earthquake and Volcano Research Center. Graduate School of Environmental Studies. Nagoya University: Aridane GNSS data. Available at: http://www.seis.nagoya-u.ac.jp/~sagiya/canary_gps/ARID.pdf. 47. Instituto Geográfico Nacional. Red Geodésica Nacional de Estaciones de Referencia GNSS (ERGNSS). Available at: https://www.ign.es/web/ign/portal/gds-gnss-estaciones-permanentes. 48. GRAFCAN. Red de Estaciones Permanentes de Canarias. Available at: https://www.grafcan.es/red-de-estaciones. 49. Dow, J. M., Neilan, R. E. & Rizos, C. The international GNSS service in a changing landscape of global navigation satellite systems. J. Geodesy 83, 191–198 (2009). 50. Beutler, G., Moore, A. W. & Mueller, I. I. The international global navigation satellite systems (GNSS) service: developments and achievements. J. Geodesy 83, 297–307 (2009). 51. MIT. Geodesy and Geodynamics. Available at: http://www-gpsg.mit.edu/. 52. International GNSS Service. 2nd Data Reprocessing Campaign. Available at: http://acc.igs.org/reprocess2.html. 53. Schmid, R., Steigenberger, P., Gendt, G., Ge, M. & Rothacher, M. Generation of a consistent absolute phase-center correction model for GPS receiver and satellite antennas. J. Geodesy 81, 781–798 (2007). 54. Petrie, E. J., King, M. A., Moore, P. & Lavallée, D. A. Higher-order ionospheric effects on the GPS reference frame and velocities. J. Geophys. Res. 115, B03417 (2010). 55. Boehm, J., Werl, B. & Schuh, H. Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for Medium-Range Weather Forecasts operational analysis data. J. Geophys. Res. 111, B02406 (2006). 56. Lyard, F., Lefevre, F., Letellier, T. & Francis, O. Modelling the global ocean tides: modern insights from fes2004. Ocean Dyn. 56, 394–415 (2006). 57. Herring, T. A., King, R. W., Floyd, M. A. & McClusky, S. C. Introduction to GAMIT/GLOBK, Release 10.7. (Massachusetts Institute of Technology, 2018 http://geoweb.mit.edu/gg/Intro_GG.pdf). 58. Altamimi, Z., Rebischung, P., Métivier, L. & Collilieux, X. ITRF2014: a new release of the International Terrestrial Reference Frame modeling nonlinear station motions. J. Geophys. Res. 121, 6109–6131 (2016). 59. Geertsma, J. & Van Opstal, G. A numerical technique for predicting subsidence above compacting reservoirs based on the nucleus of strain concept. Verh. Kon. Ned. Geol. Mijnbouwk 28, 63–78 (1973). 60. Masterlark, T. Magma intrusion and deformation predictions: sensitivities to the Mogi assumptions. J. Geophys. Res. 112, B06419 (2007). 61. Okada, Y. Surface deformation due to shear and tensile faults in a halfspace. Bull. Seismol. Soc. Am. 75, 1135–1154 (1985).en_US
dc.description.obiettivoSpecifico4V. Processi pre-eruttivien_US
dc.description.journalTypeJCR Journalen_US
dc.relation.eissn2045-2322en_US
dc.contributor.authorFernández, José-
dc.contributor.authorEscayo, Joaquin-
dc.contributor.authorHu, Zhongbo-
dc.contributor.authorCamacho, Antonio G-
dc.contributor.authorSamsonov, Sergey-
dc.contributor.authorPrieto, Juan F-
dc.contributor.authorTiampo, Kristy-
dc.contributor.authorPalano, Mimmo-
dc.contributor.authorMallorquí, Jordi J-
dc.contributor.authorAncochea, Eumenio-
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italiaen_US
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptInstituto de Geocencias (IGEO) (CSIC, UCM)-
crisitem.author.deptInstituto de Geociencias (CSIC, UCM), Calle del Doctor Severo Ochoa, no 7, Facultad de Medicina (Edificio Entrepabellones 7 y 8, 4a planta), Ciudad Universitaria, 28040, Madrid, Spain-
crisitem.author.deptInstituto de Astronomía y Geodesia, CSIC‐UCM, Madrid, Spain.-
crisitem.author.deptCanada Centre for Remote Sensing, Ottawa, Canada-
crisitem.author.deptETSI Topografía, Geodesia y Cartografía, Universidad Politécnica de Madrid, Ctra. Valencia km 7, 28031, Madrid, Spain-
crisitem.author.deptCooperative Institute for Research in Environmental Sciences (CIRES), 216UCB, University of Colorado at Boulder, Boulder, CO, 80309, USA-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia-
crisitem.author.deptCommSensLab, Dep. Signal Theory and Communications, Universitat Politècnica de Catalunya (UPC), D3-Campus Nord-UPC, C. Jordi Girona 1-3, 08034, Barcelona, Spain-
crisitem.author.deptDepartamento de Mineralogía y Petrología, Fac. CC. Geológicas, Universidad Complutense de Madrid-
crisitem.author.orcid0000-0002-4394-5018-
crisitem.author.orcid0000-0002-5500-7600-
crisitem.author.orcid0000-0001-7254-7855-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat
2021_Fernandes et al [La Palma unrest] Scientific_Reports.pdfOpen Access published article2.66 MBAdobe PDFView/Open
Show simple item record

Page view(s)

186
checked on Apr 27, 2024

Download(s)

9
checked on Apr 27, 2024

Google ScholarTM

Check

Altmetric