Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/15127
DC FieldValueLanguage
dc.date.accessioned2021-12-15T15:52:46Z-
dc.date.available2021-12-15T15:52:46Z-
dc.date.issued2016-04-
dc.identifier.urihttp://hdl.handle.net/2122/15127-
dc.descriptionStudy of a natural analogue for risk assessment. Experimental and numerical modelling approach was applied. Technique validation for measuring the flux of a CO2 single point emission site. We did an experimental and numerical modelling approach to prove methods and results.en_US
dc.description.abstractCarbon dioxide is an essential gas for life on earth although it can be lethal to living beings at high concentrations in the atmosphere. Episodic release of CO2 from underground can occur either from natural processes (i.e., mantle degassing, thermal decarbonation) or industrial (geological storage of CO2, CCS). CO2 is a colourless and odourless gas denser than air, and once released in the atmosphere from point sources, its dynamics is initially governed by buoyancy and a gas cloud can accumulate above the ground (gravitational phase) leading to the formation of the so-called “CO2 lakes”. With time, CO2 distribution is then governed by wind and atmospheric turbulence (passive dispersion phase). Natural analogues provide evidences of the impact of CO2 leakage on vegetal cover, wild life and human beings. In this work, the dynamics of CO2 in the atmosphere after ground emission is assessed to quantify their potential risk. Two approaches have been followed: (1) direct measurement of air concentration in a natural emission site, where formation of a “CO2 lake” is common and (2) numerical atmospheric modelling with the TWODEE code. The studied site is located in the Campo de Calatrava region in central Spain, which is known for a widespread degassing of mantle-derived CO2. This site, called Cañada Real, has a degassing rate between 1 and 3 tonnes of CO2 per day. When atmospheric conditions are quite stable, i.e., negligible wind speed, the formation of a blanket of CO2-enriched air is visible at naked eye reaching up to 50 cm high. The CO2 concentration measured in air is typically higher than 10,000 ppm in most monitoring stations. The measured data are consistent with the numerical models that predict maximum concentration between 40,000 and 70,000 ppm CO2 in air, which is by far higher than the 30,000 ppm threshold from which hazardous effects on human beings are observed. Conclusions from this work, however, indicate that the risk for humans even at large emission rates is low due to the CO2 dispersion effect into the atmosphere, and only under very particular conditions lethal effects are predicted.en_US
dc.language.isoEnglishen_US
dc.publisher.nameElsevieren_US
dc.relation.ispartofInternational Journal of Greenhouse Gas Controlen_US
dc.relation.ispartofseries/ 47 (2016)en_US
dc.subjectExperimental and numerical modellingen_US
dc.subjectatmospheric dispersionen_US
dc.subjectRisk assessmenten_US
dc.subjectNatural analogueen_US
dc.subjectLeakageen_US
dc.subjectCarbon storageen_US
dc.subjectcarbon dioxideen_US
dc.subjectco2 field surveyen_US
dc.titleAtmospheric dispersion modelling of a natural CO2 degassing pool from Campo de Calatrava (northeast Spain) natural analogue. Implications for carbon storage risk assessmenten_US
dc.typearticleen
dc.description.statusPublisheden_US
dc.type.QualityControlPeer-revieweden_US
dc.description.pagenumber38-47en_US
dc.subject.INGVSOLID EARTHen_US
dc.subject.INGVvulcanologyen_US
dc.subject.INGVgeologyen_US
dc.identifier.doi10.1016/j.ijggc.2016.01.033en_US
dc.relation.referencesAgnelli et al., 2015 M. Agnelli, F. Grandia, D. Soler, A. Sainz-Garcia, D. Brusi, M. Zamorano, J. Bruno Metal enrichment in shallow aquifers due to CO2(g)-rich fluids intrusion: the influence of carbonate aqueous species on iron solubility and metal plumes in natural systems Appl. Geochem. (2015) (submitted for publication) Ancochea, 1999 E. Ancochea El Campo Volcánico de Calatrava Enseñanza de las Ciencias de la Tierra, 1999 (7.3) (1999), pp. 237-243 ISSN: 1132-9157 Annunziatellis et al., 2008 A. Annunziatellis, S.E. Beaubien, S. Bigi, G. Ciotoli, M. Coltella, S. Lombardi Gas migration along fault systems and through the vadose zone in the Latera caldera (central Italy): implications for CO2 geological storage Int. J. Greenh. Gas Control, 2 (2008), pp. 353-372 ArticlePDF (4MB) Bateson et al., 2008 L. Bateson, M. Vellico, S.E. Beaubien, J.M. Pearce, A. Annunziatellis, G. Ciotoli, F. Coren, S. Lombardi, S. Marsh The application of remote sensing techniques to monitor CO2-storage sites for surface leakage: method development and testing at Latera (Italy) where naturally produced CO2 is leaking to the atmosphere Int. J. Greenh. Gas Control, 2 (2008), pp. 388-400, 10.1016/j.ijggc.2007.12.005 ArticlePDF (3MB) Baxter et al., 1999 P.J. Baxter, J.-C. Baubron, R. Coutinho Health hazards and disaster potential of ground gas emissions at Furnas volcano, Sao Miguel, Azores J. Volcanol. Geotherm. Res., 92 (1–2) (1999), pp. 95-106 ArticlePDF (388KB) Bruno et al., 2007 J. Bruno, D. Bosbach, D. Kulik, A. Navrotsky Chemical thermodynamics of solid solutions of interest in radioactive waste management: a state-of-the art report F.J. Mompean, M. Illemassene, J. Perrone (Eds.), Chemical Thermodynamics Series, vol. 10, 9789264033191, OECD Publishing, Paris (2007) Carapezza et al., 2003 M.L. Carapezza, F. Barberi, G. Tarchini, M. Ranaldi, T. Ricci Volcanic hazards of the Colli Albani R. Funicello, G. Giordano (Eds.), The Colli Albani Volcano. Special Publication of IAVCEI, 3, Geological Society, London (2003), pp. 279-297 Carapezza et al., 2012 M.L. Carapezza, F. Barber, M. Ranaldi, T. Ricci, G. Tarchini, J. Barrancos, C. Fischer, D. Granieri, C. Lucchetti, G. Melian, N. Perez, P. Tuccimei, A. Vogel, K. Webber Hazardous gas emissions from the flanks of the quiescent Colli Albani volcano (Rome, Italy) Appl. Geochem., 27 (2012), pp. 1767-1782 ArticlePDF (3MB) Cebriá and Lopez-Ruiz, 1995 J.M. Cebriá, J. Lopez-Ruiz Alkali basalts and laucitites in an extensional intra-continental plate setting: the Late Cenozoic Calatrava Volcanic Province J. Volcanol. Geotherm. Res., 185 (1995), pp. 172-180 Chiodini et al., 2010 G. Chiodini, D. Granieri, R. Avino, S. Caliro, A. Costa, C. Minopoli Non-volcanic CO2 earth degassing: Case of Mefite d’Ansanto (southern Appennines), Italy Geophys. Res. Lett., 37 (2010), p. L11303, 10.1029/2010GL042858 Costa et al., 2005 A. Costa, G. Macedonio, G. Chiodini Numerical model of gas dispersion emitted from volcanic sources Ann. Geophys., 48 (2005), pp. 805-815 Costa et al., 2008 A. Costa, G. Chiodini, D. Granieri, A. Folch, R. Hankin, S. Caliro, R. Avino, C. Cardellini A shallow layer model for heavy gas dispersion from natural sources: application on hazard assessment at Caldara di Manziana, Italy Geochem. Geophys. Geosyst., 9 (3) (2008), pp. 1-13 De Lary et al., 2012 L. De Lary, A. Loschetter, O. Bouc, J. Rohmer, C.M. Oldenburg Assessing health impacts of CO2 leakage from a geological storage site into buildings: role of attenuation in the unsaturated zone and buildings foundation Int. J. Greenh. Gas Control, 9 (2012), pp. 322-333, 10.1016/j.ijggc.2012.04.011 ArticlePDF (2MB) Elio et al., 2015 J. Elio, M.F. Ortega, B. Nisi, L.F. Mazadiego, O. Vaselli, J. Caballero, F. Grandia CO2 and Radon degassing from the natural analog of Campo de Calatrava (Spain): implications for monitoring of CO2 storage sites Int. J. Greenh. Gas Control, 32 (2015), pp. 1-14, 10.1016/j.ijggc.2014.10.014 ArticlePDF (5MB) Faive-Pierret and Le Guern, 1983 R. Faive-Pierret, F. Le Guern Health risks linked with inhalation of volcanic gases and aerosols H. Tazieff, J.C. Sabroux (Eds.), Forecasting Volcanic Events, Elsevier Science Publishers B.V., Amsterdam (1983), pp. 69-81 Farrar et al., 1995 C.D. Farrar, M.L. Sorey, W.C. Evans, J.F. Howle, B.D. Kerr, B.M. Kennedy, C.-Y. King, J.R. Southon Forest-killing diffuse CO2 emission at Mammoth Mountain as a sign of magmatic unrest Nature (1995), 10.1038/376675a0 Folch et al., 2007 A. Folch, A. Costa, R.K.S. Hankin “TWODEE-2: Computer code and related documentation”, Report INGV-DPC Project V5 – Task 2: Diffuse degassing in Italy. Definition of the scenario and estimation of the hazard. Osservatorio Vesuviano – INGV, Naples, Italy, June 2007 (2007) Folch et al., 2009 A. Folch, A. Costa, R.K.S. Hankin TWODEE-2: a shallow layer model for dense gas dispersion on complex topography Comput. Geosci., 35 (2009), pp. 667-674, 10.1016/j.cageo.2007.12.017 ArticlePDF (2MB) Giggenbach et al., 1991 W.F. Giggenbach, Y. Sano, H.U. SCHmincke CO2-rich gases from Lakes Nyos and Monoun, Cameroon; Laacher See, Germany; Dineg, Indonesia, and Mt. Gambier, Australia-variations on a common theme J. Volcanol. Geotherm. Res., 45 (1991), pp. 311-323 ArticlePDF (1011KB) Gonzalez et al., 2007 C.E. Gonzalez, R.U. Gosalvez, R. Becerra, L.E. Escobar Actividad eruptive holocena en el Campo de Calatrava (Volcan Columba, Ciudad Real, España) J. Lario, G. Silva (Eds.), XII Reunion Nacional de Cuaternario, Avila, España (2007), pp. 143-144 Hankin and Britter, 1999a R. Hankin, R. Britter TWODEE: the Health and Safety Laboratory's shallow layer model for heavy gas dispersion. Part 1: Mathematical basis and physical assumptions J. Hazard. Mater., A66 (1999), pp. 211-226 ArticlePDF (1MB) Hankin and Britter, 1999b R. Hankin, R. Britter TWODEE: the Health and Safety Laboratory's shallow layer model for heavy gas dispersion. Part 2: Outline and validation of the computational scheme J. Hazard. Mater., A66 (1999), pp. 227-237 ArticlePDF (704KB) Hankin and Britter, 1999c R. Hankin, R. Britter TWODEE: the Health and Safety Laboratory's shallow layer model for heavy gas dispersion. Part 3: Experimental validation (Theory island) J. Hazard. Mater., A66 (1999), pp. 236-261 IGME, 1998 IGME – Instituto Geológico y Minero de España Mapa geologico de España E: 1:50.000. Hoja n.° 784-785 Ciudad Real. I.G.M.E., Madrid (1998) Lopez-Ruiz et al., 2002 J. Lopez-Ruiz, J.M. Cebriá, M. Doblas Cenozoic Volcanism I: the Iberian Peninsula W. Gibbons, T. Moreno (Eds.), The Geology of Spain, Geological Society, London (2002), pp. 417-4383 Martin-Serrano et al., 2009 A. Martin-Serrano, J. Vegas, A. Garcia-Cortes, L. Galan, J.L. Gallardo-Millan, S. Martin-Alfageme, F.M. Rubio, P.I. Ibarra, A. Granda, A. Perez-Gonzalez, J.L. Garcia-Lobon Morphotectonic setting of maar lakes in the Campo de Calatrava Volcanic Field (Central Spain, SW Europe) Sediment. Geol., 222 (1–2) (2009), pp. 52-63 ArticlePDF (3MB) NIOSH, 1981 NIOSH – National Institute of Occupational Safety and Health Occupational Health Guidelines for Chemical Hazards, DHHS (NIOSH) Publication No. 81-123 (1981) http://www.cdc.gov/niosh/81-123.html Pearce et al., 2016 J. Pearce, I. Czernichowsky-Lauriol, S. Lombardi, S. Brune, A. Nador, J. Baker, H. Pauwels, G. Hatziyannis, S. Beaubien, E. Faber A review of natural CO2 accumulations in Europe as analogues for geological sequestration S.J. Baines, R.H. Worde (Eds.), Geological Storage of Carbon Dioxide, Geol. Soc., London, Special Publications, 233 (2016), pp. 29-41 Rogie et al., 2000 J.D. Rogie, D.M. Kerrick, G. Chiodini, F. Frondini Flux measurements of nonvolcanic CO2 emission from some vents in central Italy J. Geophys. Res., 105 (B4) (2000), pp. 8435-8445 Siracusa and Quattrocchi, 2007 F. Siracusa, F. Quattrocchi Misure di flusso di Geo-gas (CO2, etc.) con il “Sistema SAP” con polle gassose a flusso macroscopico: i casi della Val Comino e Palidoro. INGV Technical Report, N. 45 (2007) 24 pp. Vaselli et al., 2011 O. Vaselli, B. Nisi, L. Giannini, A. Delgado Huertas Water and gas geochemistry from the CO2-rich field of Campo de Calatrava (Castilla-La Mancha). Ciudad de la Energia, Internal report (2011), p. 39 Vaselli et al., 2012 O. Vaselli, F. Cuccoli, L. Giannini, B. Nisi, F. Sermi, F. Tassi, F. Capecchiacci, L. Capannesi, M. Nocentini Open-Path IR Laser Measurements, thermal imaging and fluid geochemistry in the Campo de Calatrava Volcanic Field. CNR-ING Report (2012) Vaselli et al., 2013 O. Vaselli, B. Nisi, F. Tassi, L. Giannini, F. Grandia, T. Darrah, F. Capecchiacci, L. Pérez del Villar Water and gas geochemistry of the Calatrava Volcanic Province (CVP) hydrothermal system (Ciudad Real, Central Spain) Geophys. Res. (2013) Abstract, 10th EGU General Assembly, EGU2013-11102en_US
dc.description.obiettivoSpecifico6V. Pericolosità vulcanica e contributi alla stima del rischioen_US
dc.description.obiettivoSpecifico6A. Geochimica per l'ambiente e geologia medicaen_US
dc.description.journalTypeJCR Journalen_US
dc.relation.issn1750-5836en_US
dc.contributor.authorGasparini, Andrea-
dc.contributor.authorSainz-García, A-
dc.contributor.authorGrandia, Fidel-
dc.contributor.authorBruno, J-
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italiaen_US
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptAmphoS21 Consulting S.L.-
crisitem.author.deptAmphos21 Consulting S.L-
crisitem.author.orcid0000-0001-6831-6093-
crisitem.author.orcid0000-0002-1474-0275-
crisitem.author.orcid0000-0001-7472-1001-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
Show simple item record

Page view(s)

92
checked on Apr 24, 2024

Download(s)

2
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric