Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/14809
DC FieldValueLanguage
dc.date.accessioned2021-08-31T07:28:56Z-
dc.date.available2021-08-31T07:28:56Z-
dc.date.issued2021-
dc.identifier.urihttp://hdl.handle.net/2122/14809-
dc.descriptionThis simple and qualitative discussion is an attempt to include in a comprehensive framework the problem of earthquake forecasting and univocally clarify the meaning of "precursor" and the true importance of their study. It is also the starting point to present the potential of the electromagnetic precursor in the framework of classic precursors. The fact that seismic precursors are truly existing phenomena does not represent the solution to the problem of deterministic forecasting. Currently a precursor is not a prediction aid but an investigative tool of the earthquake preparation process: aka the complex mechanism of microfracturing, growth and self-organization of fractures that is necessary to produce ruptures in the crust. Scholz's "Theory of Dilatance" (ToD), improved and further developed for decades after 1960, remains one of the best explanations for the existence of observable precursors and still seems to highlight the only plausible common cause. ToD is presented here in an "extended" vision in the framework of geotechnical knowledge on rock fracturing in the laboratory. Dilatance is a systematic and necessary process with respect to rock breaking. It would itself be the ideal precursor to the earthquake if it did not lack the essential characteristic of being directly observable. At the moment, the only way to detect dilatance in nature is through its interaction with the surrounding environment and its ability to change the physical characteristics of the rock, that is, through secondary phenomena that it can cause. These phenomena sometimes visible on the surface are what we call precursors. We have reviewed the main "classic" precursors by examining them in the light of the ToD. The study of dilatance, which requires a comparative, systematic and extensive monitoring of precursor phenomena, could lead to a key of interpretation of the precursors themselves for the prediction of the earthquake.en_US
dc.description.abstractQuesta trattazione divulgativa è un tentativo di presentare il problema della previsione dei terremoti nella sua globalità per chiarire il significato di “precursore” e la vera utilità dello studio dei precursori. È anche lo spunto per presentare al pubblico le potenzialità del precursore elettromagnetico nel panorama dei precursori classici. Il fatto che i precursori sismici siano fenomeni realmente esistenti non rappresenta la soluzione al problema della previsione deterministica. Attualmente un precursore non è uno strumento di previsione ma un mezzo di sondaggio di ciò che chiamiamo “preparazione del sisma”: il complesso meccanismo di microfratturazione, accrescimento e autoorganizzazione delle fratture che è necessario a produrre la rottura nella crosta. La “teoria della Dilatanza” (TdD) di Scholz, più volte perfezionata dal 1960 ad oggi, resta una delle migliori trattazioni invocabili per motivare l’esistenza dei precursori documentati e sembra tuttora restare l’unica plausibile forma di inquadramento comune. Essa viene qui ripresentata in una visione “estesa” alla luce delle conoscenze geotecniche sulla fratturazione della roccia in laboratorio. La dilatanza è un processo sistematico e necessario rispetto alla rottura della roccia. Sarebbe essa stessa il precursore ideale del terremoto se non mancasse della caratteristica essenziale di essere visibile. Al momento l’unico modo per rilevare la dilatanza in natura è attraverso la sua interazione con l’ambiente circostante e la sua capacità di mutare le caratteristiche fisiche della roccia, cioè attraverso fenomeni secondari che essa può causare. Questi fenomeni, talvolta visibili in superficie, sono ciò che chiamiamo precursori. Abbiamo messo in rassegna i principali precursori “classici” esaminandoli alla luce della TdD. Lo studio della dilatanza, che richiede un monitoraggio comparato, sistematico ed esteso dei fenomeni precursori, potrebbe condurre alla definizione di una chiave interpretativa comune e generale dei precursori stessi per la previsione del terremoto.en_US
dc.description.sponsorshipProgetto INGV “Pianeta Dinamico” (codice progetto INGV 1020.010) finanziato dal MIUR ("Fondo finalizzato al rilancio degli investimenti delle amministrazioni centrali dello Stato e allo sviluppo del Paese", legge 145/2018).en_US
dc.language.isoItalianen_US
dc.publisher.nameINGVen_US
dc.relation.ispartofQuaderni di Geofisica INGVen_US
dc.relation.ispartofseries174/ (2021)en_US
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.subjectearthquake precursorsen_US
dc.subjectearthquakeen_US
dc.subjectprecursorsen_US
dc.subjectelectromagnetic precursorsen_US
dc.subjectprecursorien_US
dc.subjectterremotoen_US
dc.subjectprecursori elettromagneticien_US
dc.titleIl ruolo dei precursori sismici e l’importanza di un precursore elettromagneticoen_US
dc.title.alternativeRole of seismic precursors and importance of an electromagnetic precursoren_US
dc.typearticleen
dc.description.statusPublisheden_US
dc.type.QualityControlPeer-revieweden_US
dc.description.pagenumber1-40en_US
dc.identifier.URLhttp://editoria.rm.ingv.it/quaderni/2021/quaderno174/en_US
dc.subject.INGV04.06. Seismologyen_US
dc.subject.INGV05.03. Educational, History of Science, Public Issuesen_US
dc.identifier.doi10.13127/qdg/174en_US
dc.relation.referencesAggarwal Y. P., Sykes L. R., Armbruster J. (1973). Premonitory Changes in Seismic Velocities and Prediction of Earthquakes. Natutre 241, 101-104. https://doi.org/10.1038/241101a0 Anderson O. L. and Grew P. C. (1977). Stress corrosion theory of crack propagation with applications to geophysics. Reviews of Geophysics and space physics, 15 (1) 77-104. https://doi.org/10.1029/RG015i001p00077 Bella F., Biagi P.F., Caputo M., Della Monica G., Ermini A., Pettinelli V., Sgrigna V. (1993). Ground tilt variations detected in the Central Appennines in the period 1986-1989 and their correlation with seismicity. Nuovo Cimento 16C, 303-311. https://doi.org/10.1007/BF02524231 Bella F., Biagi P.F., Caputo M., Cozzi E., Della Monica G., Ermini A., Plastino W., Sgrigna V. (1998). Field strength variations of LF radio waves prior to earthquakes in central Italy. Physics of the Planetari Interiors, 105, 279-286. https://doi.org/10.1016/S0031-9201(97)00097-6 Biagi P.F., Piccolo R., Ermini A., Martellucci S., Bellucci C., Hayakawa M., Capozzi V., Kingsley S. P. (2001). Possibile earthquake precursors revealed by LF radio signals. Natural Hazards and Earth System Sciences, 1:99-104. https://hal.archives-ouvertes.fr/hal-00298995 Brace W. F., Orange A. S., Madden T. R. (1965) The effect of pressure on the electrical resistivity of water‐saturated crystalline rocks. Journal of Geophysical Research 70 (22), 5669-5678. https://doi.org/10.1029/JZ070i022p05669 Brace W. F., Paulding B. W. Jr., C. Scholz (1966). Dilatancy in the fracture of crystalline rocks. Journal of Geophysical Research, 71, 3939-3953. https://doi.org/10.1029/JZ071i016p03939 Cannelli V., Piersanti A., Galli G., Melini D. (2018). Italian Radon mOnitoring Network (IRON): a permanent network for near real-time monitoring of soil radon emission in Italy. Annals of Geophysics 61 (4). https://doi.org/10.4401/ag-7604 Caputo M. (1987). Sismologia e segnali precursori dei terremoti. Edizioni Calderini, Bologna. ISBN: 88-7019-32-7 Crampin S., McGonigle R. (1981). The variation of delays in stress-induced anisotropic polarization anomalies. Geophysical Journal International, 64 (1) 115–131. https://doi.org/10.1111/j.1365-246X.1981.tb02661.x Crampin S., Evans R., Atkinson B. K., (1984). Earthquake prediction: a new physical basis. Geophysical Journal International, Volume 76, (1) 147–156. https://doi.org/10.1111/j.1365-246X.1984.tb05030.x De Santis A., De Franceschi G., Spogli L., Perrone L., Alfonsi L., Qamili E., Cianchini G., Di Giovambattista R., Salvi S., Filippi E., Pavón-Carrasco F.J., Monna S., Piscini A., Battiston R., Vitale V., Picozza P.G., Conti L., Parrott M., Pinçon J.-L., Balasis G., Tavani M., Argan A., Piano G., Rainone M.L., Liu W., and Tao D. (2015). Geospace perturbations induced by the Earth: the state of the art and futuretrends. Phys. Chem. Earth, 85, 17–33. https://doi.org/10.1016/j.pce.2015.05.004 De Santis A., Abbattista C., Alfonsi L., Amoruso L., Campuzano S.A., Carbone M., Cesaroni C., Cianchini G., De Franceschi G., De Santis A., Di Giovambattista R., Marchetti D., Martino L., Perrone L., Piscini A., Rainone M.L., Soldani M., Spogli L., Santoro F. (2019a). Geosystemics View of Earthquakes. Entropy, 21, 412. https://doi.org/10.3390/e21040412 De Santis, A., Marchetti D., Pavón-Carrasco F.J., Cianchini G.,Perrone L., Abbattista C., Alfonsi1L, Amoruso L., Campuzano S.A., Carbone M., Cesaroni C., De Granceschi G., De Santis Anna, Di Giovambattista R., Ippolito A., Piscini A., Sabbagh D., Soldani M., Santoro F., Spogli L. & Haagmans R. (2019b). Precursory worldwide signatures of earthquake occurrences on Swarm satellite data. Scientific Reports, 9:20287. https://doi.org/10.1038/s41598-019-56599-1 Dobrovolsky I.P., Zubkov S.I., Miachkin V.I. (1979). Estimation of the size of earthquake preparation zones. PAGEOPH 117, 1025–1044. https://doi.org/10.1007/BF00876083 Eftaxias k., Kapiris P., Polygiannakis J., Peratzakis A., Kopanas J., Antonopoulos G., Rigas D. (2003). Experience of short term earthquake precursors with VLF–VHF electromagnetic emissions. Natural Hazards and Earth System Sciences 3, 217–228. https://doi.org/10.5194/nhess-3-217-2003 Frank F. C. (1965). On dilatancy in relation to seismic sources. Reviews of Geophysics 3 (4), 485-503. https://doi.org/10.1029/RG003i004p00485 Ghosh D., Deb A., Sengupta R., (2009). Anomalous radon emission as precursor of earthquake. Journal of Applied Geophysics 69, 67–81. https://doi.org/10.1016/j.jappgeo.2009.06.001 Griffith A. (1921). The Phenomena of Rupture and Flow in Solids. Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, 221, 163-198. http://www.jstor.org/stable/91192 Griffith A. (1924). The theory of rupture. In: Biereno, C. B. (1924) Proceedings of the first International Conference of Applied Mechanics, Delft, pp. 55–63. Gupta I. N. (1973). Seismic velocities in rock subjected to axial loading up to shear fracture. Journal of Geophysical Research, volume 78, issue 29, pp. 6936-6942. https://doi.org/10.1029/JB078i029p06936 Hauksson E. (1981). Radon content of groundwater as an eathquake precursor: evaluation of worldwide data and physical basis. Journal of Geophysical Reseach 86 (B10), 9397-9410. https://doi.org/10.1029/JB086iB10p09397 Huang F., Li M., Ma Y., Han Y., Tian L., Yan W., Li X. (2017). Studies on earthquake precursors in China: A review for recent 50 years. Geodesy and Geodynamics 8 (1) 1-12. https://doi.org/10.1016/j.geog.2016.12.002 Holcomb D. J. and Stevens J. L. (1980) The reversible Griffith crack: A viable model for dilatancy. Journal of Geophysical Reseach 85 (B12), 7101-7107. https://doi.org/10.1029/JB085iB12p07101 Lucente F.P., De Gori P., Margheriti L., Piccinini D., Di Bona M., Chiarabba C, Piana Agostinetti N. (2010). Temporal variation of seismic velocity and anisotropy before the 2009 MW 6.3 L'Aquila earthquake, Italy. Geology (2010) 38 (11): 1015–1018. https://doi.org/10.1130/G31463.1 Main I. G., Bell A. F., Meredith P. G., Geiger S. and Touati S. (2012). The dilatancy–diffusion hypothesis and earthquake predictability. Geological Society, London, Special Publications, 367, 215-230. https://doi.org/10.1144/SP367.15 Martinelli G. (1993). Fluidodynamical and chemical features of radon 222 related to total gases: Implications for earthquake predictions. In: proceedings of IAEA Meeting on isotopic and geochemical precursors of earthquakes and volcanic eruptions, Vienna 9-12 September 1991, (IAEA-TECDOC--726) pp. 48-62. https://inis.iaea.org/search/search.aspx?orig_q=RN:25017741 Marzocchi W., Taroni M., and Falcone G. (2017). Earthquake forecasting during the complex Amatrice-Norcia seismic sequence. Science Advances, Vol. 3, no. 9, e1701239. https://doi.org/10.1126/sciadv.1701239 Mjachkin V., Brace W., Sobolev G., Dieterich J. (1975). Two Models for Earthquake Forerunners. In: Wyss M. (eds) Earthquake Prediction and Rock Mechanics. Contributions to Current Research in Geophysics (CCRG), Vol. 113. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-5534-1_15 Nardi A., Caputo M. e Chiarabba C. (2007). Possible electromagnetic earthquake precursors in two years of ELF-VLF monitoring in the atmosphere. Bollettino di Geofisica Teorica ed Applicata, Vol. 48, n. 2, pp. 205-212; June 2007, OGS Trieste. Earth-prints: http://hdl.handle.net/2122/3833 Nardi A., Caputo M. (2009). Monitoring the mechanical stress of rocks through the electromagnetic emission produced by fracturing. Elsevier, International Journal of Rock Mechanics & Mining Sciences, 46, 940–945. https://doi.org/10.1016/j.ijrmms.2009.01.005 Nardi A., Caputo M., Chiarabba C. (2007). Possible electromagnetic earthquake precursors in two years of ELF-VLF monitoring in the atmosphere. Bollettino di Geofisica Teorica ed Applicata, Vol. 48, n. 2, pp. 205-212; June 2007, OGS Trieste. http://www3.ogs.trieste.it/bgta/provapage.php?id_articolo=398 Nur A., Simmons G. (1969). Stress‐induced velocity anisotropy in rock: An experimental study. Journal of Geophysical Reseach 74 (27), 6667-6674. https://doi.org/10.1029/JB074i027p06667 Nur A., Byerlee J. D. (1971). An exact effective stress law for elastic deformation of rock with fluids. Journal of Geophysical Reseach 76 (26) 6414-6419. https://doi.org/10.1029/JB076i026p06414 Nur A. (1972). Dilatancy, pore fluids, and premonitory variations of ts/tp travel times. Bulletin of the Seismological Society of America 62 (5), 1217-1222. https://pubs.geoscienceworld.org/ssa/bssa/article/62/5/1217/101731/dilatancy-pore-fluids-and-premonitory-variations Piersanti A., Cannelli V., Galli G. (2016). The Pollino 2012 seismic sequence: clues from continuous radon monitoring. Solid Earth, 7, 1303–1316. https://doi.org/10.5194/se-7-1303-2016 Reynolds O. (1886). Dilatancy. Nature 33, 429-430. https://doi.org/10.1038/033429b0 Rikitake T. (1986). Previsione Dei Terremoti. Libreria Dario Flaccovio Editrice, 301. Palermo. ISBN: 8877580232 Scholz C. (1968). The frequency-magnitude relation of microfracturing in rock and its relation to earthquakes. Bulletin of the Seismological Society of America, 58 (1), 399-415. https://pubs.geoscienceworld.org/ssa/bssa/article/58/1/399/116569/The-frequency-magnitude-relation-of Scholz C. (1968)b. Microfracturing and the inelastic deformation of rock in compression. Journal of Geophysical Research, 73, 1417-1432. https://doi.org/10.1029/JB073i004p01417 Scholz C. H., Sykes L. R., Aggarwal Y. P. (1973). Earthquake prediction: a physical basis. Science, 181, 803-810. https://doi.org/10.1126/science.181.4102.803 Schorlemmer, D., Wiemer, S. & Wyss, M. (2005). Variations in earthquake-size distribution across different stress regimes. Nature 437, 539–542. https://doi.org/10.1038/nature04094 Sobolev G., Spetzler H., Salov B. (1978). Precursors to failure in rocks while undergoing anelastic deformations. Journal of Geophysical Reseach 83 (B4), 1775-1784. https://doi.org/10.1029/JB083iB04p01775 Virk H.S. and Singh B (1993). Radon anomalies in soil-gas and groundwater as earthquake precursor phenomena. Tectonophysics, 227, 215-224. https://doi.org/10.1016/0040-1951(93)90096-3 Walia V., Virk H.S., Yang T.S., Mahajan S., Walia M., Bajwa B.S. (2005). Earthquake Prediction Studies Using Radon as a Precursor in N-W Himalayas, India: A Case Study. TAO, Vol. 16, No. 4, 775-804. https://www.researchgate.net/profile/Vivek_Walia2/publication/277846764_Earthquake_Prediction_Studies_Using_Radon_as_a_Precursor_in_N-W_Himalayas_India_A_Case_Study/links/5577b11808aeb6d8c01ce528.pdf Wang W. (2015). Relationship between earthquake dilatancy and electric precursor phenomena. Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2015, vol. 79, issue 1, 249-262. https://doi.org/10.1007/s11069-015-1839-y Woith H. (2015). Radon earthquake precursor: A short review. The European Physical Journal Special Topics 224 (4), 611–627. https://doi.org/10.1140/epjst/e2015-02395-9 Zechar, J.D., Marzocchi, W. & Wiemer, S. (2016). Operational earthquake forecasting in Europe: progress, despite challenges. Bull Earthquake Eng 14, 2459–2469. https://doi.org/10.1007/s10518-016-9930-7en_US
dc.description.obiettivoSpecifico7T. Variazioni delle caratteristiche crostali e "precursori"en_US
dc.description.journalTypeJCR Journalen_US
dc.relation.issn1590-2595en_US
dc.contributor.authorNardi, Adriano-
dc.contributor.authorPiersanti, Antonio-
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italiaen_US
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italiaen_US
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1it-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.orcid0000-0002-7211-2963-
crisitem.author.orcid0000-0002-1814-5721-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent05. General-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat
Precursori (Nardi, 2020).pdfOpen Access2.17 MBAdobe PDFView/Open
Show simple item record

Page view(s)

243
checked on May 1, 2024

Download(s)

288
checked on May 1, 2024

Google ScholarTM

Check

Altmetric