Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/14500
DC FieldValueLanguage
dc.date.accessioned2021-02-11T10:38:23Z-
dc.date.available2021-02-11T10:38:23Z-
dc.date.issued2014-
dc.identifier.urihttp://hdl.handle.net/2122/14500-
dc.description.abstractThe Neapolitan volcanic area (Southern Italy), which includes the Phlegrean Volcanic District and the Somma– Vesuvius complex, has been the site of intense Plio-Quaternary magmatic activity and has produced volcanic rocks with a subduction-related geochemical and isotopic signature. High-Mg, K-basaltic lithic lava fragments dispersed within hydromagmatic tuff of the Solchiaro eruption (Procida Island) provide constraints on the nature and role of both the mantle source prior to enrichment and the subduction-related components. The geochemical data (Nb/Yb, Nb/Y, Zr/Hf) indicate a pre-enrichment source similar to that of enriched MORB mantle. In order to constrain the characteristics of subducted slab-derived components added to this mantle sector, new geochemical and Sr–Nd-isotopic data have been acquired on meta-sediments and pillow lavas from Timpa delle Murge ophiolites. These represent fragments of Tethyan oceanic crust (basalts and sediments) obducted during the Apennine orogeny, and may be similar to sediments subducted during the closure of the Tethys Ocean. Based on trace element compositions (e.g., Th/Nd, Nb/Th, Yb/Th and Ba/Th) and Nd-isotopic ratio, we hypothesize the addition of several distinct subducted slab-derived components to the mantle wedge: partial melts from shales and limestones, and aqueous fluids from shales, but the most important contribution is provided by melts from pelitic sediments. Also, trace elements and Sr–Nd-isotopic ratios seem to rule out a significant role for altered oceanic crust. Modeling based on variations of trace elements and isotopic ratios indicates that the pre-subduction mantle source of the Phlegrean Volcanic District and Somma–Vesuvius was enriched by 2–4% of subducted slab-derived components. This enrichment event might have stabilized amphibole and/or phlogopite in the mantle source. 6% degree of partial melting of a phlogopite-bearing enriched source, occurring initially in the garnet stability field and then in the spinel stability field can generate a melt with trace elements and Sr– Nd-isotopic features matching those of high-Mg, K-basalts of Procida Island. Furthermore, 2% partial melting of the same enriched source can reproduce the trace elements and isotopic features of the most primitive magmas of Somma–Vesuvius, subsequently modified by assimilation of continental crust during fractional crystallization processes at mid-lower depth. Combined trace element and Sr–Nd isotope modeling constrains the age of the enrichment event to 45 Ma ago, suggesting that the Plio-Quaternary magmatism of the Neapolitan area is postorogenic, and related to the subduction of oceanic crust belonging to the Tethys Oceanen_US
dc.language.isoEnglishen_US
dc.publisher.nameElsevieren_US
dc.relation.ispartofChemical Geologyen_US
dc.relation.ispartofseries/386 (2014)en_US
dc.subjectNeapolitan volcanic areaen_US
dc.subjectPhlegrean Volcanic Districten_US
dc.subjectSomma–Vesuvius complexen_US
dc.subjectBasilicata ophiolitesen_US
dc.titleSubduction-related enrichment of the Neapolitan volcanoes (Southern Italy) mantle source: New constraints on the characteristics of the slab-derived componentsen_US
dc.typearticleen
dc.description.statusPublisheden_US
dc.description.pagenumber165-183en_US
dc.identifier.doi10.1016/j.chemgeo.2014.08.014en_US
dc.relation.referencesArienzo, I., Civetta, L., Heumann, A., Wörner, G., Orsi, G., 2009. Isotopic evidence for open system processes within the Campanian Ignimbrite (Campi Flegrei-Italy) magma chamber. Bull. Volcanol. 71, 285–300. Avanzinelli, R., Elliot, T., Tommasini, S., Conticelli, S., 2008. Constraints on the genesis of potassium-rich Italian volcanic rocks from U/Th disequilibrium. J. Petrol. 49, 195–223. Avanzinelli, R., Lustrino, M., Mattei, M., Melluso, L., Conticelli, S., 2009. Potassic and ultrapotassic magmatism in the circum-Tyrrhenian region: significance of carbonated pelitic vs. pelitic sediment recycling at destructive plate margins. Lithos 113, 213–227. Ayers, J.C., 1998. Trace element modeling of aqueous fluid–peridotite interaction in the mantle wedge of subduction zones. Contrib. Mineral. Petrol. 132, 390–404. Ayuso, R.A., De Vivo, B., Rolandi, G., Seal, R.R., Paone, A., 1998. Geochemical and isotopic (Nd–Pb–Sr–O) variations bearing on the genesis of volcanic rocks from Vesuvius, Italy. J. Volcanol. Geotherm. Res. 82, 53–78. Beccaluva, L., Macciotta, G., Spadea, P., 1983. Petrology and geodynamic significance of the Calabria–Lucania ophiolites. Rend. Soc. Ital. Mineral. Petrol. 38, 973–987. Beccaluva, L., Bonatti, E., Dupuy, C., Ferrara, G., Innocenti, F., Lucchini, F., Macera, P., Petrini, R., Rossi, P.L., Serri, G., Seyler, M., Siena, F., 1990. Geochemistry and mineralogy of volcanic rocks from ODP Sites 650, 651, 655, and 654 in the Tyrrhenian Sea. In: Kastens, K.A., et al. (Eds.), Proceedings of the Ocean Drilling Program, Scientific Results. 107. College Station, TX (Ocean Drilling Program), pp. 49–74. Beccaluva, L., Di Girolamo, P., Serri, G., 1991. Petrogenesis and tectonic setting of the Roman Volcanic Province, Italy. Lithos 26, 191–221. Becker, H., Jochum, K.P., Carlson, R.W., 2000. Trace element fractionation during dehydration of eclogites from high-pressure terranes and the implications for element fluxes in subduction zones. Chem. Geol. 163, 65–99. Bell, K., Lavecchia, G., Rosatelli, G., 2013. Cenozoic Italian magmatism — isotope constraints for possible-plume-related activity. J. S. Am. Earth Sci. 41, 22–40. Bianchini, G., Beccaluva, L., Siena, F., 2008. Post-collisional and intraplate Cenozoic volcanism in the rifted Apennines/Adriatic domain. Lithos 101 (1), 125–140 Bizimis, M., Salters, V.J.M., Bonatti, E., 2000. Trace and REE content of clinopyroxenes from supra-subduction zone peridotites. Implication for melting and enrichment processes in island arcs. Chem. Geol. 165, 67–85. Bonardi, G., Amore, F.O., Ciampo, G., De Capoa, P., Miconnet, P., Perrone, V., 1988a. Il complesso Liguride Auct.: stato delle conoscenze e problemi aperti sulla sua evoluzione pre-appenninica ed I suoi rapporti con l'Arco Calabro. Mem. Soc. Geol. Ital. 41, 17–35. Bonardi, G., D'Argenio, B., Perrone, V., 1988a. Carta Geologica dell'Appennino Meridionale alla scala 1: 250.000. Mem. Soc. Geol. It. 41, Tavola allegata. Bortolotti, V., Principi, G., 2005. Tethyan ophiolites and Pangea break-up. Island Arc 14, 442–470. Boynton, W.V., 1984. Cosmochemistry of the rare earth elements: meteorite studies. In: Henderson, P. (Ed.), Rare Earth Element Geochemistry. Elsevier, Amsterdam, pp. 63–114. Brenan, J.M., Shaw, H.F., Ryerson, F., Phinney, D.L., 1995. Mineral-aqueous fluid partitioning of trace elements at 900 °C and 2.0 Gpa: constraints on the trace element chemistry of mantle and deep crustal fluids. Geochim. Cosmochim. Acta 59, 3331–3350. Brocchini, D., Principe, C., Castradori, D., Laurenzi, M.A., Gorla, L., 2001. Quaternary evolution of the southern sector of the Campanian Plain and early Somma–Vesuvius activity: insights from the Trecase 1 well. Mineral. Petrol. 73, 67–91. Brown, R.J., Orsi, G., de Vita, S., 2008. New insights into Late Pleistocene explosive volcanic activity and caldera formation on Ischia (southern Italy). Bull. Volcanol. 70, 583–603. Brown, R.J., Civetta, L., Arienzo, I., D'Antonio, M., Moretti, R., Orsi, G., Tomlinson, E.L., Albert, P.G., Menzies, M., 2014. Assembly, evolution and disruption of a magmatic plumbing system before and after a cataclysmic caldera-collapse eruption at Ischia volcano (Italy). Contrib. Mineral. Petrol. 168. http://dx.doi.org/10.1007/s00410-014- 1035-1. Caggianelli, A., Del Moro, A., Paglionico, A., Piccaterra, G., Pinarelli, L., Rottura, A., 1991. Lower crustal granite genesis connected with chemical fractionation in the continental crust of Calabria (Southern Italy). Eur. J. Mineral. 3, 159–180. Carminati, C., Lustrino, M., Doglioni, C., 2012. Geodynamic evolution of the central and western Mediterranean: tectonics vs. igneous petrology constraints. Tectonophysics 579, 173–192. Caro, G., Bourdon, B., 2010. Non-chondritic Sm/Nd ratio in the terrestrial planets: consequences for the geochemical evolution of the mantle–crust system. Geochim. Cosmochim. Acta 74 (11), 3333–3349. Cioni, R., Civetta, L., Marianelli, P., Metrich, N., Santacroce, R., Sbrana, A., 1995. Compositional layering and syneruptive mixing of a periodically refilled shallow magma chamber: the AD 79 Plinian eruption of Vesuvius. J. Petrol. 36, 739–776. Cioni, R., Santacroce, R., Sbrana, A., 1999. Pyroclastic deposits as a guide for reconstructing the multi-stage evolution of the Somma–Vesuvius Caldera. Bull. Volcanol. 60, 207–222. Civetta, L., Galati, R., Santacroce, R., 1991. Magma mixing and convective compositional layering within the Vesuvius magma chamber. Bull. Volcanol. 53, 287–300. Civetta, L., D'Antonio, M., De Lorenzo, S., Di Renzo, V., Gasparini, P., 2004. Thermal and geochemical constraints on the ‘deep’ magmatic structure of Mt. Vesuvius. J. Volcanol. Geotherm. Res. 133, 1–12. Class, C., Miller, D.M., Goldstein, S.L., Langmuir, C.H., 2000. Distinguishing melt and fluid subduction components in Umnak volcanics, Aleutian arc. Geochem. Geophys. Geosyst. 1. http://dx.doi.org/10.1029/1999GC000010. Conceição, R.V., Green, D.H., 2004. Derivation of potassic (shoshonitic) magmas by decompression melting of phlogopite + pargasite lherzolite. Lithos 72 (3), 209–229. Conticelli, S., D'Antonio, M., Pinarelli, L., Civetta, L., 2002. Source contamination and mantle heterogeneity in the genesis of Italian potassic and ultrapotassic volcanic rocks: Sr–Nd–Pb Isotopic data from Roman Province and Southern Tuscany. Mineral. Petrol. 74, 189–222. Conticelli, S., Melluso, L., Perini, G., Avanzinelli, R., Boari, E., 2004. Petrologic, geochemical and isotopic characteristics of potassic and ultrapotassic magmatism in centralsouthern Italy: inferences on its genesis and on the nature of the mantle sources. Period. Mineral. 73, 153–164. Conticelli, S., Carlson, R.W., Widom, E., Serri, G., 2007. Chemical and isotopic composition (Os, Pb, Nd, and Sr) of Neogene to Quaternary calc-alkalic, shoshonitic, and ultrapotassic mafic rocks from the Italian peninsula: inferences on the nature of their mantle sources. In: Beccaluva, L., et al. (Eds.), Cenozoic Volcanism in the Mediterranean Area. Geol. Soc. Am. Spec. Paper. 418, pp. 171–202. Conticelli, S., Guarnieri, L., Farinelli, A., Mattei, M., Avanzinelli, R., Bianchini, G., Boari, E., Tommasini, S., Tiepolo, M., Prelević, D., Venturelli, G., 2009. Trace elements and Sr– Nd–Pb isotopics of K-rich, shoshonitic, and calc-alkaline magmatism of the Western Mediterranean Region: genesis of ultrapotassic to calc-alkaline magmatic associations in a post-collisional geodynamic setting. Lithos 107, 68–92. Cristi Sansone, M.T., Rizzo, G., Mongelli, G., 2011. Petrochemical characterization of mafic rocks from the Ligurian ophiolites, southern Apennines. Int. Geol. Rev. 53, 130–156. D'Antonio, M., Di Girolamo, P., 1994. Petrological and geochemical study of mafic shoshonitic volcanics from Procida-Vivara and Ventotene islands (Campanian Region, South Italy). Acta Vulcanol. 5, 69–80. D'Antonio, M., Civetta, L., Di Girolamo, P., 1999. Mantle source heterogeneity in the Campanian region (south Italy) as inferred from geochemical and isotopic features of mafic volcanic rocks with shoshonitic affinity. Mineral. Petrol. 67, 163–192. D'Antonio, M., Tonarini, S., Arienzo, I., Civetta, L., Di Renzo, V., 2007. Components and processes in the magma genesis of the Phlegrean Volcanic District, southern Italy. In: Beccaluva, L., et al. (Eds.), Cenozoic Volcanism in the Mediterranean Area. Geol. Soc. Am. Spec. Pap. 418, pp. 203–220. D'Antonio, M., Tonarini, S., Arienzo, I., Civetta, L., Dallai, L., Moretti, R., Orsi, G., Andria, M., Trecalli, A., 2013. Mantle and crustal processes in the magmatism of the Campaniaregion: inferences from mineralogy, geochemistry, and Sr–Nd–O isotopics of young hybrid volcanics of the Ischia island (South Italy). Contrib. Mineral. Petrol. 165, 1173–1194. D'Antonio, M., Tilton, G.R., Civetta, L., 1996. Petrogenesis of Italian alkaline lavas deduced from Pb–Sr–Nd isotopic relationships. In: Basu, A., Hart, S.R. (Eds.), Am. Geophys. U. Mon. 95, pp. 253–267. Davidson, J.P., Wilson, R., 1989. Evolution of an alkali basalt-trachyte suite from Jebel Marra volcano, Sudan, through assimilation and fractional crystallization. Earth Planet. Sci. Lett. 95, 141–160. De Astis, G., Peccerillo, A., Kempton, P.D., La Volpe, L., Wu, T.W., 2000. Transition from calc-alkaline to potassium-rich magmatism in subduction environments: geochemical and Sr, Nd, Pb isotopic constraints from the island of Vulcano (Aeolian arc). Contrib. Mineral. Petrol. 139, 684–703. De Astis, G., Piochi, M., Pappalardo, L., 2004. Procida Volcanic History: new insights in the evolution of the Phlegraean Volcanic District (Campania, Italy). Bull. Volcanol. 66, 622–641. De Astis, G., Kempton, P.D., Peccerillo, A., Wu, T.W., 2006. Trace element and isotopic variations from Mt. Vulture to Campanian volcanoes: constraints for slab detachment and mantle inflow beneath southern Italy. Contrib. Mineral. Petrol. 151, 331–351. Deino, A.L., Orsi, G., de Vita, S., Piochi, M., 2004. The age of the Neapolitan Yellow Tuff caldera-forming eruption (Campi Flegrei caldera, Italy) assessed by 40Ar/39Ar dating method. J. Volcanol. Geotherm. Res. 133, 157–170. Del Moro, A., Gioncada, A., Pinarelli, L., Sbrana, A., Joron, J.L., 1998. Sr, Nd, Pb isotopic evidence for open system evolution at Vulcano, Aeolian Arc, Italy. Lithos 43, 81–106. Di Renzo, V., Di Vito, M.A., Arienzo, I., Carandente, A., Civetta, L., D'Antonio, M., Giordano, F., Orsi, G., Tonarini, S., 2007. Magmatic history of Somma–Vesuvius on the basis of new geochemical and isotopic data from a deep borehole (Camaldoli della Torre). J. Petrol. 48, 753–784. Di Renzo, V., Arienzo, I., Civetta, L., D'Antonio, M., Tonarini, S., Di Vito, M.A., Orsi, G., 2011. The magmatic feeding system of the Campi Flegrei caldera: architecture and temporal evolution. Chem. Geol. 281, 227–241. Di Vito, M.A., Isaia, R., Orsi, G., Southon, J., de Vita, S., D'Antonio, M., Pappalardo, L., Piochi, M., 1999. Volcanic and deformational history of the Campi Flegrei caldera in the past 12 ka. J. Volcanol. Geotherm. Res. 91, 221–246. Dorendorf, F., Wiechert, U., Wörner, G., 2000. Hydrated sub-arc mantle: a source for the Kluchevskoy volcano, Kamchatka/Russia. Earth Planet. Sci. Lett. 175, 69–86. Downes, H., Thirlwall, M.F., Trayhorn, S.C., 2001. Miocene subduction-related magmatism in southern Sardinia: Sr–Nd and oxygen isotopic evidence for mantle source enrichment. J. Volcanol. Geotherm. Res. 106, 1–21. Duggen, S., Hoernle, K., van den Bogaard, P., Garbe-Schönberg, D., 2005. Post-collisional transition from subduction-to intraplate-type magmatism in the westernmost Mediterranean: evidence for continental-edge delamination of subcontinental lithosphere. J. Petrol. 46 (6), 1155–1201. Elburg, M., Foden, J., 1998. Temporal changes in arc magma geochemistry, northern Sulawesi, Indonesia. Earth Planet. Sci. Lett. 163, 381–398. Ellam, R.M., Hawkesworth, C.J., Menzies, M.A., Rogers, N.W., 1989. The volcanism of southern Italy: role of subduction and the relationships between potassic and sodic alkaline magmatism. J. Geophys. Res. 94, 4589–4601. Elliott, T., Plank, T., Zindler, A., White, W., Bourdon, B., 1997. Element transport from slab to volcanic front at the Mariana Arc. J. Geophys. Res. 102, 14991–15019. Faccenna, C., Funiciello, F., Civetta, L., D'Antonio, M., Moroni, M., Piromallo, C., 2007. Slab distribution, mantle circulation, and the opening of the Tyrrhenian basin. In: Beccaluva, L., et al. (Eds.), Cenozoic Volcanism in the Mediterranean Area. Geol. Soc. Am. Spec. Pap. 418, pp. 153–169. Faure, G., 1986. Principles of Isotope Geology, Second edition. J. Wiley and Sons, New York, (589 pp.). Fedele, L., Scarpati, C., Lanphere, M., Melluso, L., Morra, V., Perrotta, A., Ricci, G., 2008. The Breccia Museo formation, Campi Flegrei, southern Italy: geochronology, chemostratigraphy and relationship with the Campanian Ignimbrite eruption. Bull. Volcanol. 70, 1189–1219. Fedele, L., Insinga, D.D., Calvert, A.T., Morra, V., Perrotta, A., Scarpati, C., 2011. 40Ar/39Ar dating of tuff vents in the Campi Flegrei caldera (southern Italy): toward a new chronostratigraphic reconstruction of the Holocene volcanic activity. Bull. Volcanol. 73, 1323–1336. Foley, S.F., 1992. Petrological characterization of the source components of potassic magmas: geochemical and experimental constraints. Lithos 28, 187–204. Francalanci, L., Taylor, S.R., McCulloch, M.T., Woodhead, J., 1993. Geochemical and isotopic variations in the calc-alkaline rocks of Aeolian Arc (Southern Italy): constraints on the magma genesis. Contrib. Mineral. Petrol. 113, 300–313. Francalanci, L., Avanzinelli, R., Petrone, C.M., Santo, A.P., 2004. Petrological and magmatological characteristics of the Aeolian Arc volcanoes, southern Tyrrhenian Sea, Italy: inferences on shallow level processes and magma source variations. Period. Mineral. 73, 75–104. Francalanci, L., Avanzinelli, R., Tommasini, S., Heuman, A., 2007. A west-east geochemical and isotopic traverse along the volcanism of the Aeolian Island Arc, southern Tyrrhenian Sea, Italy: inferences on the mantle source processes. In: Beccaluva, L., et al. (Eds.), Cenozoic Volcanism in the Mediterranean Area. Geol. Soc. Am. Spec. Pap. 418, pp. 235–263 Franciosi, L., Lustrino, M., Melluso, L., Morra, V., D'Antonio, M., 2003. Geochemical characteristics and mantle sources of the Oligo–Miocene primitive basalts from Sardinia. Ofioliti 28, 105–114. Franz, L., Becker, K.-P., Kramer, W., Herzig, P.M., 2002. Metasomatic mantle xenoliths from the Bismarck Microplate (Papua New Guinea) — thermal evolution, geochemistry and extent of slab-induced metasomatism. J. Petrol. 43 (2), 315–343. Gale, A., Dalton, C.A., Langmuir, C.H., Su, Y., Schilling, J.G., 2013. The mean composition of ocean ridge basalts. Geochem. Geophys. Geosyst. 14 (3), 489–518.Gasperini, D., Blichert-Toft, J., Bosch, D., Del Moro, A., Macera, P., Albaréde, F., 2002. Upwelling of deep mantle material through a plate window: evidence from the geochemistry of Italian basaltic volcanics. J. Geophys. Res. 107. http://dx.doi.org/10. 1029/2001jb000418. Gebauer, S.K., Schmitt, A.K., Pappalardo, L., Stockli, D.F., Lovera, O.M., 2014. Crystallization and eruption ages of Breccia Museo (Campi Flegrei caldera, Italy) plutonic clasts and their relation to the Campanian ignimbrite. Contrib. Mineral. Petrol. 167, 953. http://dx.doi.org/10.1007/s00410-013-0953-7. Grassi, D., Schmidt, M.W., Günther, D., 2012. Element partitioning during carbonated pelite melting at 8, 13 and 22GPa and the sediment signature in the EM mantle components. Earth Planet. Sci. Lett. 327, 84–96. Green, T.H., Adam, J., 2003. Experimentally-determined trace element characteristics of aqueous fluid from partially dehydrated mafic oceanic crust at 3.0 GPa, 650–700 C. Eur. J. Mineral. 15 (5), 815–830. Gvirtzman, Z., Nur, A., 1999. The formation of Mount Etna as the consequence of slab rollback. Nature 401, 782–785. Handley, H.K., Macpherson, C.G., Davidson, J.P., Berlo, K., Lowry, D., 2007. Constraining fluid and sediment contributions to subduction-related magmatism in Indonesia: Ijen Volcanic Complex. J. Petrol. 48 (6), 1155–1183. Hanyu, T., Tatsumi, Y., Nakai, S., Chang, Q., Miyazaki, T., Sato, K., Tani, S., Shibata, T., Yoshida, T., 2006. Contribution of slab melting and slab dehydration to magmatism in the NE Japan arc for the last 25 Myr: constraints from geochemistry. Geochem. Geophys. Geosyst. 7 (article number Q08002). Harangi, S., Downes, H., Seghedi, I., 2006. Tertiary–Quaternary subduction processes and related magmatism in the Alpine–Mediterranean region. In: Gee, D.G., Stephenson, R. (Eds.), European Lithosphere Dynamics. Geol. Soc. Lond. Mem. 32, pp. 167–190. Hart, S.R., 1984. A large-scale isotopic anomaly in the Southern Hemisphere mantle. Nature 309, 753–757. Hart, S.R., 1988. Heterogeneous mantle domains: signatures, genesis, and mixing chronologies. Earth Planet. Sci. Lett. 90, 273–296. Herron, M.M., 1988. Geochemical classification of terrigenous sands and shales from core or log data. J. Sed. Petrol. 58, 820–829. Hofmann, A.W., 1988. Chemical Differentiation of the Earth: the relationship between mantle, continental crust and oceanic crust. Earth Planet. Sci. Lett. 90, 297–314. Iacono Marziano, G., Gaillard, G., Pichavant, M., 2008. Limestone assimilation by basaltic magmas: an experimental re-assessment and application to Italian volcanoes. Contrib. Mineral. Petrol. 155, 719–738. Johnson, M.C., Plank, T., 1999. Dehydration and melting experiments constrain the fate of subducted sediments. Geochem. Geophys. Geosyst. 1. http://dx.doi.org/10.1029/ 1999GC000014. Kelemen, P.B., Rilling, J.L., Parmentier, E.M., Mehl, L., Hacker, B.R., 2003. Thermal structure due to solid-state flow in the mantle wedge beneath arcs. In: Eiler, J.M. (Ed.), Inside the Subduction Factory. Geoph. Monog. Ser. 138, pp. 293–311. Kerrick, D.M., Connolly, J.A.D., 2001. Metamorphic devolatilization of subducted marine sediments and the transport of volatiles into the Earth's mantle. Nature 411 (6835), 293–296. Kessel, R., Schmidt, M.W., Ulmer, P., Pettke, T., 2005. Trace element signature of subduction-zone fluids, melts and supercritical liquids at 120–180 km depth. Nature 437, 724–727. Klimm, K., Blundy, J.D., Green, T.H., 2008. Trace element partitioning and accessory phase saturation during H2O-saturated melting of basalt with implications for subduction zone chemical fluxes. J. Petrol. 49, 523–553. Le Maitre, R.W., 2002. Igneous Rocks: A Classification and Glossary of Terms: A Classification and Glossary of Terms: Recommendations of the International Union of Geological Sciences, Subcommission on the Systematics of Igneous Rocks. Cambridge University Press. Leslie, R.A.J., Danyushevsky, L.V., Crawford, A.J., Verbeeten, A.C., 2009. Primitive shoshonites from Fiji: geochemistry and source components. Geochem. Geophys. Geosyst. 10 (article number Q07001). Liberi, F., Morten, M., Piluso, E., 2006. Geodynamic significance of ophiolites within the Calabrian Arc. Island Arc 15, 26–43. Lustrino, M., Wilson, M., 2007. The Circum-Mediterranean anorogenic Cenozoic igneous province. Earth-Sci. Rev. 81, 1–65. Lustrino, M., Morra, V., Fedele, L., Franciosi, L., 2009. The beginning of the Apennine subduction system in central–western Mediterranean: constraints from Cenozoic ‘orogenic’ magmatic activity of Sardinia (Italy). Tectonics 28, TC5016. Lustrino, M., Duggen, S., Rosenberg, C.L., 2011. The Central–Western Mediterranean: anomalous igneous activity in an anomalous collisional tectonic setting. Earth Sci. Rev. 104 (1), 1–40. Lyubetskaya, T., Korenaga, J., 2007. Chemical composition of Earth's primitive mantle and its variance: 1. Method and results. J. Geophys. Res. 112, 1–21. Marcucci, M., Conti, M., Spadea, P., 1987. Radiolarian association in cherts from Timpa delle Murge (Lucanian Apennine, Italy). Ofioliti 12, 411–414. Melzer, S., Foley, S.F., 2000. Phase relations and fractionation sequences in potassic magma series modelled in the system CaMgSi2O6–KAlSiO4–Mg2SiO4–F at 1 bar to 18 kbar. Contrib. Mineral. Petrol. 138, 186–197. Münker, C., 2000. The isotopic and trace element budget of the Cambrian Devil River arc system, New Zealand: identification of four source components. J. Petrol. 41, 759–788. Nikogosian, I.K., van Bergen, M.J., 2010. Heterogeneous mantle sources of potassium-rich magmas in central-southern Italy: melt inclusion evidence from Roccamonfina and Ernici (Mid Latina Valley). J. Volcanol. Geotherm. Res. 197 (1), 279–302. Orsi, G., D'Antonio, M., de Vita, S., Gallo, G., 1992. The Neapolitan Yellow Tuff, a largemagnitude trachytic phreatoplinian eruption: eruptive dynamics, magma withdrawal and caldera collapse. J. Volcanol. Geotherm. Res. 53, 275–287. Orsi, G., Civetta, L., D'Antonio, M., Di Girolamo, P., Piochi, M., 1995. Step-filling and development of a three-layers magma chamber: the Neapolitan Yellow Tuff case history. J. Volcanol. Geotherm. Res. 67, 291–312. Orsi, G., de Vita, S., Di Vito, M., 1996. The restless, resurgent Campi Flegrei nested caldera (Italy): constraints on its evolution and configuration. J. Volcanol. Geotherm. Res. 74, 179–214. Orsi, G., Di Vito, M.A., Isaia, R., 2004. Volcanic hazard assessment at the restless Campi Flegrei caldera. Bull. Volcanol. 66, 514–530. Paone, A., 2004. Evidence of crustal contamination, sediment, and fluid components in the campanian volcanic rocks. J. Volcanol. Geotherm. Res. 138, 1–26. Paone, A., 2006. The geochemical evolution of the Mt. Somma–Vesuvius volcano. Mineral. Petrol. 87, 53–80. Pearce, J.A., Kempton, P.D., Nowell, G.M., Noble, S.R., 1999. Hf–Nd element and isotopic perspective on the nature and provenance of mantle and subduction components in western Pacific arc-basin systems. J. Petrol. 40, 1579–1611. Peate, D.W., Pearce, J.A., Hawkesworth, C.J., Colley, H., Edwards, C.M.H., Hirose, K., 1997. Geochemical variations in Vanuatu arc lavas; the role of subducted material and a variable mantle wedge composition. J. Petrol. 38, 1331–1358. Peccerillo, A., 1999. Multiple mantle metasomatism in central-southern Italy: geochemical effects, timing and geodynamic implications. Geology 27, 315–318. Peccerillo, A., 2005. Plio-Quaternary volcanism in Italy. Petrology, Geochemistry, Geodynamics. Springer, Berlin Heidelberg New York. Peccerillo, A., Lustrino, M., 2005. Compositional variations of the Plio-Quaternary magmatism in the circum-Tyrrhenian area: deep- versus shallow mantle processes. In: Foulger, G.R., et al. (Eds.), Plates, Plumes and Paradigms. Geol. Soc. Am. Spec. Pap. 388, pp. 421–434. Peccerillo, A., Panza, G.F., 1999. Upper mantle domains beneath central-southern Italy: petrological, geochemical and geophysical constraints. Pure Appl. Geophys. 156, 421–443. Peccerillo, A., Panza, G.F., Aoudi, A., Frezzotti, M.L., 2008. Relationships between magmatism and lithosphere–asthenosphere structure in the Western Mediterranean and implications for geodynamics. Rend. Lincei 19, 291–309. Perrotta, A., Scarpati, C., Luongo, G., Morra, V., 2006. The Campi Flegrei caldera boundary in the city of Naples. In: De Vivo, B. (Ed.), Volcanism in the Campania Plain: Vesuvius, Campi Flegrei and Ignimbrites. Developments in Volcanology. 9, pp. 85–96. Perrotta, A., Scarpati, C., Luongo, G., Morra, V., 2010. Stratigraphy and volcanological evolution of the southwestern sector of Campi Flegrei and Procida Island, Italy. Geol. Soc. Am. Spec. Pap. 464, 171–191. Piluso, E., Cirrincione, R., Morten, L., 2000. Ophiolites of the Calabrian Peloritan Arc and their relationships with the crystalline basement (Catena Costiera and Sila Piccola, Calabria, southern Italy). GLOM 2000 excursion guide-book. Ofioliti 25, 117–140. Piochi, M., Pappalardo, L., De Astis, G., 2004. Geochemical and isotopical variations within the Campanian Comagmatic Province: implications on magma source composition. Ann. Geophys. 47, 1485–1499. Piochi, M., De Vivo, B., Ayuso, R.A., 2006. The magma feeding system of Somma–Vesuvius (Italy) strato-volcano: new inferences from a review of geochemical and Sr, Nd, Pb and O isotope data. Dev. Volcanol. 9, 181–202. Plank, T., Langmuir, C.H., 1998. The geochemical composition of subducting sediment and its consequences for the crust and mantle. Chem. Geol. 145, 325–394. Prelević, D., Akal, C., Foley, S.F., Romer, R.L., Stracke, A., van Den Bogaard, P., 2012. Ultrapotassic mafic rocks as geochemical proxies for post-collisional dynamics of orogenic lithospheric mantle: the case of southwestern Anatolia, Turkey. J. Petrol. 53 (5), 1019–1055. Robertson, A.H.F., 2002. Overview of the genesis and emplacement of Mesozoic ophiolites in the Eastern Mediterranean Tethyan region. Lithos 65, 1–67. Rolandi, G., Bellucci, F., Cortini, M., 2004. A new model for the formation of the Somma Caldera. Mineral. Petrol. 80, 27–44. Rottura, A., Del Moro, A., Pinarelli, L., Petrini, R., Peccerillo, A., Caggianelli, A., Bargossi, G.M. , Piccaterra, G., 1991. Relationships between intermediate and acidic rocks in orogenic granitoid suites: petrological, geochemical and isotopic (Sr, Nd, Pb) data from Capo Vaticano (southern Calabria, Italy). Chem. Geol. 92, 153–176. Ryan, I.G., Morris, I., Tera, F., Leeman, W.P., Tsvetkov, A., 1995. Cross-arc geochemical variations in the Kurile Arc as a function of slab depth. Science 270, 625–627. Salters, V.J.M., Stracke, A., 2004. The composition of the depleted mantle. Geochem. Geophys. Geosyst. 5. http://dx.doi.org/10.1029/2003GC000597. Santacroce, R., Cioni, R., Marianelli, P., Sbrana, A., Sulpizio, R., Zanchetta, G., Donahue, D.J., Joron, J.L., 2008. Age and whole rock–glass compositions of proximal pyroclastics from the major explosive eruptions of Somma–Vesuvius: a review as a tool for distal tephrostratigraphy. J. Volcanol. Geotherm. Res. 177, 1–18. Scandone, R., Bellucci, F., Lirer, L., Rolandi, G., 1991. The structure of the Campanian Plain and the activity of the Neapolitan volcanoes (Italy). J. Volcanol. Geotherm. Res. 48, 1–31. Scarpati, C., Cole, P., Perrotta, A., 1993. The Neapolitan Yellow Tuff — a large volume multiphase eruption from Campi Flegrei, southern Italy. Bull. Volcanol. 55, 343–356. Schiano, P., Clocchiatti, R., Ottolini, L., Sbrana, A., 2004. The relationship between potassic, calc-alkaline and Na-alkaline magmatism in South Italy volcanoes: a melt inclusion approach. Earth Planet. Sci. Lett. 220, 121–137 Serri, G., 1990. Neogene–Quaternary magmatism of the Tyrrhenian region: characterization of the magma sources and geodynamic implications. Mem. Geol. Soc. Ital. 41, 219–242. Shimabukuro, D.H., Wakabayashi, J., Alvarez, W., Chang, S., 2012. Cold and old: The rock record of subduction initiation beneath a continental margin, Calabria, southern Italy. Lithosphere 4, 524–532. Somma, R., Ayuso, R.A., De Vivo, B., Rolandi, G., 2001. Major, trace element and isotope geochemistry (Sr–Nd–Pb) of interplinian magmas from Mt. Somma–Vesuvius (Southern Italy). Mineral. Petrol. 73, 121–143. Spadea, P., 1982. Continental crust rocks associated with ophiolites in Lucanian Apennine (southern Italy). Ofioliti 7, 501–522. Spadea, P., 1994. Calabria–Lucania ophiolites. Boll. Geofis. Teor. Appl. 36, 271–281. Spera, F.J., Bohrson, W.A., 2001. Energy-constrained open-system magmatic processes I: general model and energy-constrained assimilation and fractional crystallization (EC-AFC) formulation. J. Petrol. 42, 999–1018. Sun, S.-s, McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders, A.D., Norry, M.J. (Eds.), Magmatism in the Ocean Basins. Geol. Soc. Lond. Spec. Publ. 42, pp. 313–345 Thomsen, T.B., Schmidt, M.W., 2008. Melting of carbonated pelites at 2.5–5.0 GPa, silicate–carbonatite liquid immiscibility, and potassium–carbon metasomatism of the mantle. Earth Planet. Sci. Lett. 267 (1), 17–31. Tomlinson, E.L., Arienzo, I., Civetta, L., Wulf, S., Smith, V.C., Hardiman, M., Lane, C.S., Carandente, A., Orsi, G., Rosi, M., Muller, W., Menzies, M.A., 2012. Geochemistry of the Phlegraean Fields (Italy) proximal sources for major Mediterranean tephras: Implications for the dispersal of Plinian and co-ignimbritic components of explosive eruptions. Geochim. Cosmochim. Acta 93 (102–12893), 102–128. Tonarini, S., Leeman, W.P., Ferrara, G., 2001. Boron isotopic variations in lavas of the Aeolian volcanic arc, South Italy. J. Volcanol. Geotherm. Res. 110, 155–170. Tonarini, S., Leeman, W.P., Civetta, L., D'Antonio, M., Ferrara, G., Necco, A., 2004. B/Nb and δ11B systematics in the Phlegrean Fields District Italy. J. Volcanol. Geotherm. Res. 133, 123–139. Tonarini, S., D'Antonio, M., Di Vito, M.A., Orsi, G., Carandente, A., 2009. Geochemical and B–Sr–Nd isotopic evidence for mingling and mixing processes in the magmatic system that fed the Astroni volcano (4.1–3.8 ka) within the Campi Flegrei caldera (southern Italy). Lithos 107, 135–151. Tortorici, L., Catalano, S., Monaco, C., 2009. Ophiolite-bearing mélanges in southern Italy. Geol. J. 44 (2), 153–166. Trua, T., Serri, G., Marani, M.P., Rossi, l.P., Gamberi, F., Renzulli, A., 2004. Mantle domains beneath the southern Tyrrhenian: constraints from recent seafloor sampling and dynamic implications. Period. Mineral. 73, 53–73. Turco, E., Schettino, A., Pierantoni, P.P., Santarelli, G., 2006. The Pleistocene extension of the Campania Plain in the framework of the southern Tyrrhenian tectonic evolution: morphotectonic analysis, kinematic model and implications for volcanism. In: De Vivo, B. (Ed.), Volcanism in the Campania Plain: Vesuvius, Campi Flegrei and Ignimbrites. Developments in Volcanology. 9, pp. 27–51. Turner, S.P., Hawkesworth, C.J., Rogers, N., Bartlett, J., Worthington, T., Hergt, J., Pearce, J., Smith, I., 1997. 238U/230Th disequilibria, magma petrogenesis, and flux rates beneath the depleted Tonga-Kermadec island arc. Geochim. Cosmochim. Acta 61, 4855–4884. Vignaroli, G., Faccenna, C., Rossetti, F., Jolivet, L., 2009. Insights from the Apennines metamorphic complexes and their bearing on the kinematics evolution of the orogen. Geol. Soc. Lond., Spec. Publ. 311 (1), 235–256. Vigouroux, N., Wallace, P.J., Williams-Jones, G., Kelley, K., Kent, A.J.R., Williams-Jones, A.E., 2012. The sources of volatile and fluid-mobile elements in the Sunda arc: a melt inclusion study from Kawah Ijen and Tambora volcanoes, Indonesia. Geochem. Geophys. Geosyst. 13 (article number Q09015). Villemant, B., 1988. Trace element evolution in the Phlegrean Fields (Central Italy): fractional crystallization and selective enrichment. Contrib. Mineral. Petrol. 98, 169–183. Vitale, S., Ciarcia, S., 2013. Tectono-stratigraphic and kinematic evolution of the southern Apennines/Calabria-Peloritani Terrane system (Italy). Tectonophysics 583, 164–182. Vitale, S., Fedele, L., Tramparulo, F., Ciarcia, S., Mazzoli, S., Novellino, A., 2013. Structural and petrological analyses of the Frido Unit (souther Italy): new insights into the early tectonic evolution of the southern Apennines–Calabrian Arc system. Lithos 168–169, 219–235. Walker, J.A., Patino, L.C., Carr, M.J., Feigenson, M.D., 2001. Slab control over HFSE depletions in central Nicaragua. Earth Planet. Sci. Lett. 192, 533–543. Webster, J.D., Raia, F., Tappen, C., De Vivo, B., 2003. Pre-eruptive geochemistry of the ignimbrite-forming magmas of the Campanian Volcanic Zone, Southern Italy, determined from silicate melt inclusions. Mineral. Petrol. 79, 99–125. Workman, R.K., Hart, S.R., 2005. Major and trace element composition of the depleted MORB mantle (DMM). Earth Planet. Sci. Lett. 231, 53–72. Wyllie, P.J., 1977. Crustal anatexis: an experimental review. Tectonophysics 43, 41–71. Zindler, A., Hart, S.R., 1986. Chemical geodynamics. Ann. Rev. Earth Planet. Sci. 14, 493–571en_US
dc.description.obiettivoSpecifico2T. Deformazione crostale attivaen_US
dc.description.obiettivoSpecifico3T. Sorgente sismicaen_US
dc.description.obiettivoSpecifico4T. Sismicità dell'Italiaen_US
dc.description.obiettivoSpecifico6A. Geochimica per l'ambiente e geologia medicaen_US
dc.description.journalTypeJCR Journalen_US
dc.relation.issn0009-2541en_US
dc.contributor.authorMazzeo, Fabio Carmine-
dc.contributor.authorD'Antonio, Massimo-
dc.contributor.authorArienzo, Ilenia-
dc.contributor.authorAulinas, Meritxell-
dc.contributor.authorDi Renzo, Valeria-
dc.contributor.authorGimeno, D-
dc.contributor.departmentDipartimento di Scienze della Terra, dell'Ambiente e delle Risorse, Università degli Studi di Napoli Federico II, Largo S. Marcellino 10, 80134 Napoli, Italyen_US
dc.contributor.departmentDipartimento di Scienze della Terra, dell'Ambiente e delle Risorse, Università degli Studi di Napoli Federico II, Largo S. Marcellino 10, 80134 Napoli, Italyen_US
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italiaen_US
dc.contributor.departmentc Departamento de Geoquímica, Petrologia i Prospecció Geològica, Facultat de Geologia, Universitat de Barcelona (UB), Martí i Franquès s/n, 08028 Barcelona, Spainen_US
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italiaen_US
dc.contributor.departmentc Departamento de Geoquímica, Petrologia i Prospecció Geològica, Facultat de Geologia, Universitat de Barcelona (UB), Martí i Franquès s/n, 08028 Barcelona, Spainen_US
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptUniversità di Napoli "Federico II"-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.orcid0000-0002-6213-056X-
crisitem.author.orcid0000-0003-3795-3537-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Mazzeo et al, 2014.pdf4.58 MBAdobe PDF
Show simple item record

Page view(s)

70
checked on Apr 27, 2024

Download(s)

1
checked on Apr 27, 2024

Google ScholarTM

Check

Altmetric