Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/14470
DC FieldValueLanguage
dc.date.accessioned2021-02-08T08:48:50Z-
dc.date.available2021-02-08T08:48:50Z-
dc.date.issued2020-11-
dc.identifier.urihttp://hdl.handle.net/2122/14470-
dc.description.abstractStructure-from-motion (SfM) is currently used for geological-geomorphological purposes under the condition that the modeling is based either on several ground control points (GCPs) well distributed in the scene or on direct georeferencing (DG). In emergency conditions and in presence of active morphodynamic processes, it could be unfeasible to use GCPs or DG. A study aimed at evaluating the quality of the results achievable by means of completely free SfM modeling of images taken from a distance of some hundred meters is shown in this paper. It is based on an experiment with an artificial target and some surveys of a bedrock scarp, where resolution and precision are evaluated as empirical functions of distance and focal length, taking into account the issues related to the scale factor. The problems related to the recognition of localized surface changes by means of multitemporal surveys are also studied. The primary result is that the free approach can really be used in geomorphological and seismotectonical surveying carried out in emergency conditions.en_US
dc.language.isoEnglishen_US
dc.relation.ispartofJournal of Surveying Engineeringen_US
dc.relation.ispartofseries4/146 (2020)en_US
dc.subjectStructure-from-motionen_US
dc.subjectSpatial resolutionen_US
dc.subjectCentral Apenninesen_US
dc.subjectSlope stabilityen_US
dc.titleResolution and Precision of Fast Long-Range Terrestrial Photogrammetric Surveying Aimed at Detecting Slope Changesen_US
dc.typearticleen
dc.description.statusPublisheden_US
dc.type.QualityControlPeer-revieweden_US
dc.description.pagenumber4020017en_US
dc.subject.INGVResolution and Precision of Fast Long-Range Terrestrial Photogrammetric Surveying Aimed at Detecting Slope Changesen_US
dc.identifier.doi10.1061/(ASCE)SU.1943-5428.0000328en_US
dc.relation.referencesAgisoft. 2020. “Metashape web page.” Accessed February 7, 2020. http:// www.agisoft.com. Agrafiotis, P., and A. Georgopoulos. 2015. “Comparative assessment of very high resolution satellite and aerial orthoimagery.” Int. Arch. Photo- gramm. Remote Sens. Spatial Inf. Sci. 40 (3/W2): 1–7. https://doi.org /10.5194/isprsarchives-XL-3-W2-1-2015. Al-Halbouni, D., E. Holohan, L. Saberi, H. Alrshdan, A. Sawarieh, D. Closson, T. R. Walter, and T. Dahm. 2017. “Sinkholes, subsidence and subrosion on the eastern shore of the Dead Sea as revealed by a close-range photogrammetric survey.” Geomorphology 285 (May): 305–324. https://doi.org/10.1016/j.geomorph.2017.02.006. Baroň, I., L. Plan, B. Grasemann, I. Mitroviċ, W. Lenhardt, H. Hausmann, and J. Stemberk. 2016. “Can deep seated gravitational slope deformations be activated by regional tectonic strain: First insights from displacement measurements in caves from the Eastern Alps.” Geomor- phology 259 (Apr): 81–89. https://doi.org/10.1016/j.geomorph.2016.02 .007. Beshr, A. A. A., and I. M. A. Elnaga. 2011. “Investigating the accuracy of digital levels and reflectorless total stations for purposes of geodetic engineering.” Alexandria Eng. J. 50 (4): 399–405. https://doi.org/10 .1016/j.aej.2011.12.004. Brunier, G., J. Fleury, J. E. Anthony, V. Pothin, C. Vella, P. Dussouillez, A. Gardel, and E. Michaud. 2016. “Structure-from-motion photogram- metry for high-resolution coastal and fluvial geomorphic surveys.” Géo- morphologie 22 (2): 147–161. https://doi.org/10.4000/geomorphologie .11358. Carbonneau, P. E., and J. T. Dietrich. 2017. “Cost-effective non-metric photogrammetry from consumer-grade sUAS: Implications for direct georeferencing of structure from motion photogrammetry.” Earth Surf. Process Landforms 42 (3): 473–486. https://doi.org/10.1002/esp.4012. Caroti, G., I. Martínez-Espejo Zaragoza, and A. Piemonte. 2015. “Accuracy assessment in structure from motion 3D reconstruction from UAV-born images: The influence of the data processing methods.” Int. Arch. Pho- togramm. Remote Sens. Spatial Inf. Sci. 40 (1/W4): 103–109. https://doi .org/10.5194/isprsarchives-XL-1-W4-103-2015. Di Naccio, D., V. Kastelic, M. M. C. Carafa, C. Esposito, P. Millilo, and C. Di Lorenzo. 2019. “Gravity versus tectonics: The case of 2016 Amatrice and Norcia (central Italy) earthquakes surface coseismic frac- tures.” J. Geophys. Res. Earth Surf. 124 (4): 994–1017. https://doi.org /10.1029/2018JF004762. Ferrigno, F., G. Gigli, R. Fanti, E. Intrieri, and N. Casagli. 2020. “GB-InSAR monitoring and observational method for landslide emer- gency management: The Montaguto earthflow (AV, Italy).” Nat. Haz- ards Earth Syst. Sci. 17 (6): 845–860. https://doi.org/10.5194/nhess-17 -845-2017. Innovmetric. 2020. “PolyWorks web page.” Accessed January 28, 2020. http://www.innovmetric.com/en. Jarvis, A., H. I. Reuter, A. Nelson, and E. Guevara. 2008. “Hole-filled seamless SRTM data V4, international centre for tropical agriculture (CIAT).” Accessed June 10, 2020. http://srtm.csi.cgiar.org. Jaud, M., S. Passot, R. Le Bivic, C. Delacourt, P. Grandjean, and N. Le Dantec. 2016. “Assessing the accuracy of high resolution digital surface models computed by PhotoScan and MicMac in sub-optimal survey conditions.” Remote Sens. 8 (6): 465. https://doi.org/10.3390 /rs8060465. Kastelic, V., P. Burrato, M. M. C. Carafa, and R. Basili. 2017. “Repeated surveys reveal nontectonic exposure of supposedly active normal faults in the central Apennines, Italy.” J. Geophys. Res. Earth Surf. 122 (1): 114–129. https://doi.org/10.1002/2016JF003953. Lichti, D. D., and S. Jamtsho. 2006. “Angular resolution of terrestrial laser scanners.” Photogramm. Rec. 21 (114): 141–160. https://doi.org/10 .1111/j.1477-9730.2006.00367.x. Murtiyoso, A., P. Grussenmeyer, N. Börlin, J. Vandermeerschen, and T. Freville. 2018. “Open source and independent methods for bundle adjustment assessment in close-range UAV photogrammetry.” Drones 2 (1): 3. https://doi.org/10.3390/drones2010003. Nouwakpo, S. K., M. A. Weltz, and K. McGwire. 2016. “Assessing the performance of structure-from-motion photogrammetry and terrestrial LiDAR for reconstructing soil surface microtopography of naturally vegetated plots.” Earth Surf. Processes Landforms 41 (3): 308–322. https://doi.org/10.1002/esp.3787. Paredes-Hernandez, C. U., W. E. Salinas-Castillo, F. Guevara-Cortina, and X. Martinez-Becerra. 2013. “Horizontal positional accuracy of Google Earth’s imagery over rural areas: A study case in Tamaulipas, Mexico.” Boletim de Ciências Geodésicas 19 (4): 588–601. https://doi.org/10 .1590/S1982-21702013000400005. Pesci, A., et al. 2016. “A fast method for monitoring the coast through independent photogrammetric measurements: Application and case study.” J. Geosci. Geomatics 4 (4): 73–81. https://doi.org/10.12691/jgg -4-4-1. Pesci, A., S. Amoroso, G. Teza, and L. Minarelli. 2018. “Characterisation of soil deformation due to blast-induced liquefaction by UAV-based photogrammetry and terrestrial laser scanning.” Int. J. Remote Sens. 39 (22): 8317–8336. https://doi.org/10.1080/01431161.2018.1484960. Pesci, A., G. Teza, and E. Bonali. 2011. “Terrestrial laser scanner resolu- tion: Numerical simulations and experiments on spatial sampling opti- mization.” Remote Sens. 3 (1): 167–184. https://doi.org/10.3390 /rs3010167. Pesci, A., G. Teza, and F. Loddo. 2019. “Low cost structure-from-motion- based fast surveying of a rock cliff: Precision and reliability assess- ment.” Quaderni di Geofisica 2019 (156): 1–22. Pulighe, G., V. Baiocchi, and F. Lupia. 2016. “Horizontal accuracy assess- ment of very high resolution Google Earth images in the city of Rome, Italy.” Int. J. Dig. Earth 9 (4): 342–362. https://doi.org/10.1080 /17538947.2015.1031716. Schlagenhauf, A. 2009. “Identication des forts séismes passés sur les failles normales actives de la région Lazio-Abruzzo (Italie Centrale) par ‘data- tions cosmogéniques’ (36Cl) de leurs escarpements.” Ph.D. thesis, Laboratoire de Géophysique Interne et Tectonophysique, Université Jo- seph Fourier. Smith, M. W., J. L. Carrivick, and D. J. Quincey. 2016. “Structure from motion photogrammetry in physical geography.” Prog. Phys. Geogr. 40 (2): 247–275. https://doi.org/10.1177/0309133315615805. Teza, G., A. Galgaro, N. Zaltron, and R. Genevois. 2007. “Terrestrial laser scanner to detect landslide displacement fields: A new approach.” Int. J. Remote Sens. 28 (16): 3425–3446. https://doi.org/10.1080 /01431160601024234. Teza, G., A. Pesci, and A. Ninfo. 2016. “Morphological analysis for archi- tectural applications: Comparison between laser scanning and structure- from-motion photogrammetry.” J. Sur. Eng. 142 (3): 04016004. https:// doi.org/10.1061/(ASCE)SU.1943-5428.0000172. Tonkin, N. T., and G. N. Midgley. 2016. “Ground-control networks for image based surface reconstruction: An investigation of optimum sur- vey designs using UAV derived imagery and structure-from-motion photogrammetry.” Remote Sens. 8 (9): 786. https://doi.org/10.3390 /rs8090786. Travelletti, J., C. Delacourt, J. P. Malet, P. Allemand, J. Schmittbuhl, and R. Toussaint. 2013. “Performance of image correlation techniques for landslide displacement monitoring.” In Landslide science and practice, edited by C. Margottini, P. Canuti, and K. Sassa, 217–226. Berlin: Springer. Triggs, B., P. Mclauchlan, P. Hartley, and A. Fitzgibbon. 2000. “Bundle adjustment—A modern synthesis.” In Proc., Int. Workshop on Vision Al- gorithms IWVA 1999, edited by B. Triggs, A. Zisserman and R. Szeliski, 298–372. Berlin: Springer. https://doi.org/10.1007/3-540-44480-7_21. Turner, D., A. Lucieer, and L. Wallace. 2014. “Direct georeferencing of ultrahigh-resolution UAV imagery.” IEEE T. Geosci. Remote Sens. 52 (5): 2738–2745. https://doi.org/10.1109/TGRS.2013.2265295. Vajsová, B., A. Walczynska, P. Aastrand, S. Barisch, and S. Hain. 2015. “New sensors benchmark report on WorldView-3.” Accessed February 14, 2020. https://publications.jrc.ec.europa.eu/repository/bitstream /JRC99433/reqno_jrc99433_lb-na-27673-en-n.pdf.en_US
dc.description.obiettivoSpecifico2T. Deformazione crostale attivaen_US
dc.description.journalTypeJCR Journalen_US
dc.contributor.authorPesci, Arianna-
dc.contributor.authorTeza, Giordano-
dc.contributor.authorKastelic, Vanja-
dc.contributor.authorCarafa, Michele Matteo C.-
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italiaen_US
dc.contributor.departmentDepartment of Geosciences, Universityof Paduaen_US
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italiaen_US
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italiaen_US
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.orcid0000-0003-1863-3132-
crisitem.author.orcid0000-0002-6902-5033-
crisitem.author.orcid0000-0002-7751-0055-
crisitem.author.orcid0000-0001-5463-463X-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat
SUENG-1101_R1.pdfManuscript2.77 MBAdobe PDFView/Open
Show simple item record

Page view(s)

344
checked on Apr 27, 2024

Download(s)

61
checked on Apr 27, 2024

Google ScholarTM

Check

Altmetric