Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/14341
DC FieldValueLanguage
dc.date.accessioned2021-01-25T07:53:29Z-
dc.date.available2021-01-25T07:53:29Z-
dc.date.issued2014-10-
dc.identifier.urihttp://hdl.handle.net/2122/14341-
dc.description.abstractThe 2012 Emilia seismic sequence in central Italy represents an illustrative example of quasi-consecutive triggering with several mainshocks occurring within a few hours or a few days. The sequence was characterized by seven earthquakes of moment magnitude Mw >5, rupturing adjacent fault segments of the buried fold arc of the northern Apennines, for a total length of about 50 km (Scognamiglio et al., 2012; Fig. 1). The occurrence of so many large earthquakes, in such a short time window, suggests a possible interpretation in terms of mutual, static (Ganas et al., 2012), or dynamic (Convertito et al., 2013) triggering. In this article, we discuss the consequences of a consecutive succession of earthquakes, that is, a succession of close earthquakes that occur almost simultaneously. Multiple triggering—with variable time delays—has been observed in several damaging earthquake sequences of the Italian Apennine belt. In the central Apennines, the 2009 L’Aquila Mw 6.3 earthquake was followed, the day after, by an Mw 5.6 event occurred at the southeast edge of the main fault. This seismic sequence has been the deadliest one in Italy, with almost 300 victims, since 1980. The seismicity of the whole sequence spread over a 40 km long fault system (Chiarabba et al., 2009). The 2002 Molise seismic sequence is remembered for two major shocks Mw 5.8 and 5.7 that occurred within a few hours causing severe damage and destroying a school populated by children (Vallèe and Di Luccio, 2005). The 1997–1998 Umbria–Marche seismic sequence was characterized by two mainshocks breaking adjacent parts of two faults and occurring a few hours from each other (Pino and Mazza, 2000). Overall, this sequence numbered six shocks of moderate magnitude (5:2 ≤ Mw ≤ 6:0), occurring along a 40 km line. The 1980Irpinia earthquake, with surface-wave magnitude Ms 6.9, was indeed composed by the sequence of three distinct subevents, nucleating on different faults at intervals of about 20 s, resulting in a total seismic moment M0 2:6 × 1019 N·m (Pingue et al., 1993; Troise et al., 1998). This event caused about 3000 deaths and huge damage. In all the above cited sequences, the total length of the fractured fault zone was approximately the same, that is, about 50 km. In this article, we simulate a consecutive seismic sequence using the seismograms recorded during the Emilia sequence. Our hypothesis is that the design spectrum may be exceeded when the seven major (Mw >5) earthquakes were to occur one immediately after the other. As our results show, structures can be stressed by consecutive wavetrains, possibly characterized by an increase of acceleration and displacement amplitude due to resonance. The obtained results suggest that at least for specific design applications, such as for strategic structures (i.e., power plants, nuclear waste disposals, bridges, hospitals, etc.) seismic-hazard analyses and design spectra should take into account the possibility that several mainshocks can be triggered consecutively, resulting in a ground shaking highly increased in amplitude and duration.en_US
dc.language.isoEnglishen_US
dc.publisher.nameSismological Society of Americaen_US
dc.relation.ispartofSeismological Research Lettersen_US
dc.relation.ispartofseries5/85(2014)en_US
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.subjectThe 2012 Emiliaen_US
dc.subjectImplicationsen_US
dc.subjectSeismic Hazarden_US
dc.titleThe 2012 Emilia, Italy, Quasi-Consecutive Triggered Mainshocks: Implications for Seismic Hazarden_US
dc.typearticleen
dc.description.statusPublisheden_US
dc.type.QualityControlPeer-revieweden_US
dc.description.pagenumber970-976en_US
dc.identifier.doi10.1785/0220140022en_US
dc.relation.referencesCamassi, R., and M. Stucchi (1996). NT4.1 un catalogo parametrico di terremoti di area italiana al di sopra della soglia del danno, CNR-GNDT, Milano, November, 1–86. Chiarabba, C., A. Amato, M. Anselmi, P. Baccheschi, I. Bianchi, M. Cattaneo, G. Cecere, L. Chiaraluce, M. G. Ciaccio, and P. De Gori et al. (2009). The 2009 L’Aquila (central Italy) Mw 6.3 earthquake: Mainshock and aftershocks, Geophys. Res. Lett. 36, L18308, doi: 10.1029/2009GL039627. Convertito, V., F. Catalli, and A. Emolo (2013). Combining stress transfer and source directivity: The case of the 2012 Emilia seismic sequence, Scientific Report 3, Article number: 3114. Cornell, A. (1968). Engineering seismic risk analysis, Bull. Seismol. Soc. Am. 58, no. 5, 1583–1606. Eurocode 8 (2004). Design of structures for earthquake resistance, part I: General rules, seismic actions and rules for buildings, EN-1998-1, European Committee for Standardization (CEN), Brussels, May 2004. Freed, A. M. (2005). Earthquake triggering by static, dynamic, and postseismic stress transfer, Annu. Rev. Earth Planet. Sci. 33, 335–367. Ganas, A., Z. Roumelioti, and K. Chousianitis (2012). Static stress transfer from the May 20, 2012, M 6.1 Emilia Romagna (northern Italy) earthquake using a co-seismic slip distribution model, Ann. Geophys. 55, no. 4, 655–662, doi: 10.4401/ag-6176. Hudson, D. E. (1956). Response spectrum techniques in engineering seismology, in World Conference on Earthquake Engineering Research Institute Berkeley, Berkeley, California, June 1956. Iervolino, I., F. De Luca, and E. Chioccarelli (2012). Engineering seismic demand in the 2012 Emilia sequence: Preliminary analysis and model compatibility assessment, Ann. Geophys. 55, no. 4, 639–645. Koyama, J. (1997). The Complex Faulting Process of Earthquakes, Kluwer Academic Publishers, London, UK, ISBN: 0-7923-4499-5. Meletti, C., V. D’Amico, G. Ameri, A. Rovida, and M. Stucchi (2012). Seismic hazard in the Po Plain and the 2012 Emilia earthquakes, Ann. Geophys. 55, no. 4, 623–629. Montone, P., and M. T. Mariucci (1999). Active stress along the NE external margin of the Apennines: The Ferrara arc, Northern Italy, J. Geodyn. 28, 251–265. NormeTecniche per le Costruzioni (NTC08) (2008), Ministerial Decree 14/01/2008, Gazzetta Ufficiale n. 29, 4 February 2008. Perotti, C. R. (1991). Osservazioni sull’assetto strutturale del versante padano dell’Appennino nord-occidentale, Atti Tic. Sc. Terra 34, 11–22. Pieri, M., and G. Groppi (1981). Subsurface geological structure of the Po plain, Italy, CNR, Prog. Final. Geod. 414, l–13. Pingue, F., G. De Natale, and P. Briole (1993). Modeling of the 1980 Irpinia earthquake source: Constrain for geodetic data, Ann. Geophys. 36, no. 1, 27–40. Pino, N. A., and S. Mazza (2000). The Umbria–Marche (central Italy) earthquakes: Relation between rupture directivity and sequence evolution for the Mw >5 shocks, J. Seismol. 4, no. 4, 451–461. Priestley, M. J. N., M. C. Calvi, and M. J. Kowalsky (2007). DisplacementBased Seismic Design of Structures, IUSS Press, Pavia, Italy, 670 pp. Salvi, S., C. Tolomei, J. P. M. Boncori, G. Pezzo, S. Atzori, A. Antonioli, E. Trasatti, R. Giuliani, S. Zoffoli, and A. Coletta (2012). Activation of the SIGRIS monitoring system for ground deformation mapping during the Emilia 2012 seismic sequence, using COSMOSkyMed InSAR data, Ann. Geophys. 55, no. 4, 797–802, doi: 10.4401/ag-6181. Scognamiglio, L., L. Margheriti, F. M. Mele, E. Tinti, A. Bono, P. De Gori, V. Lauciani, F. P. Lucente, A. G. Mandiello, and C. Marcocci et al. (2012). The 2012 Pianura Padana Emiliana seismic sequence: Locations, moment tensors and magnitudes, Ann. Geophys. 55, no. 4, 549–559, doi: 10.4401/ag-6159. Troise, C., G. De Natale, F. Pingue, and S. M. Petrazzuoli (1998). Evidence for static stress interaction among earthquakes in the south-central Apennines (Italy), Geophys. J. Int. 134, 809–817. Vallèe, M., and F. Di Luccio (2005). Source analysis of the 2002 Molise, southern Italy, twin earthquakes (30/31 and 11/01), Geophys. Res. Lett. 32, L12309, doi: 10.1029/2005GL022687. Wu, C., Z. Peng, and Y. Ben-Zion (2010). Refined thresholds for nonlinear ground motion and temporal changes of site response associated with medium-size earthquakes, Geophys. J. Int. doi: 10.1111/ j.1365-246X.2010.04704.x.en_US
dc.description.obiettivoSpecifico6T. Studi di pericolosità sismica e da maremotoen_US
dc.description.journalTypeJCR Journalen_US
dc.relation.issn0895-0695en_US
dc.contributor.authorTramelli, Anna-
dc.contributor.authorConvertito, Vincenzo-
dc.contributor.authorPino, Nicola Alessandro-
dc.contributor.authorPiochi, Monica-
dc.contributor.authorTroise, Claudia-
dc.contributor.authorDe Natale, Giuseppe-
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italiaen_US
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italiaen_US
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italiaen_US
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italiaen_US
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italiaen_US
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italiaen_US
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.orcid0000-0001-6259-5730-
crisitem.author.orcid0000-0002-7115-7502-
crisitem.author.orcid0000-0003-1092-7152-
crisitem.author.orcid0000-0003-4214-1998-
crisitem.author.orcid0000-0001-6555-5777-
crisitem.author.orcid0000-0001-8391-2846-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
2014_Tramelli_Emilia.pdf640.71 kBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

3
checked on Feb 10, 2021

Page view(s)

137
checked on Apr 24, 2024

Download(s)

1
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric