Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/14340
DC FieldValueLanguage
dc.date.accessioned2021-01-25T07:48:22Z-
dc.date.available2021-01-25T07:48:22Z-
dc.date.issued2014-
dc.identifier.urihttp://hdl.handle.net/2122/14340-
dc.description.abstractWe consider here the effect of extensional tectonics on the dynamics of large calderas. Active calderas are generally characterised by different periods of uplift and subsidence, in some cases spaced out by eruptions. Understanding of mechanisms which produces caldera uplift/subsidence is one of the main topics of volcanological research but is still a matter of debate. Using a simple conceptual model, we show analytically that the tectonic extension and its rate can produce the condition for the subsidence, in early stage, which in turn can also yield the magma migration (uplift) and, eventually, eruption. This work provides a possible hypothesis for caldera dynamic, which initiates due to chamber depressurisation and evolves towards potential conditions for magma re-mobilization as a consequence of tectonic loading. The conceptual model is also applied to the Campi Flegrei caldera (Italy), showing that the observed subsidence may be a result of extensional processes.en_US
dc.language.isoEnglishen_US
dc.publisher.nameSpringer-Verlagen_US
dc.relation.ispartofBulletin of Volcanologyen_US
dc.relation.ispartofseries/76 (2014)en_US
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.subjectCalderaen_US
dc.subjectSubsidenceen_US
dc.subjectExtensional tectonicsen_US
dc.subjectCampi Flegreien_US
dc.titleCaldera subsidence in extensional tectonicsen_US
dc.typearticleen
dc.description.statusPublisheden_US
dc.type.QualityControlPeer-revieweden_US
dc.description.pagenumber870en_US
dc.identifier.doi10.1007/s00445-014-0870-2en_US
dc.relation.referencesAcocella V (2007) Understanding caldera structure and development; an overview of analog models compared to natural calderas. Earth Sci Rev 85:125–160 Acocella V, Cifelli F, Funiciello R (2000) Analogue models of collapse calderas and resurgent domes. J Volcan Geoth Res 104:81–96 Acocella V, Korme T, Salvini F, Funiciello R (2003) Elliptic calderas in Ethiopian rift: control of pre-existing structure. J Volcan Geoth Res 199:189–203 Amadei B, Stephenson O (1997) Rock stress and its measurement. Chapman and Hall, London Amoruso A, Crescentini L, Linde AT, Sacks S, Scarpa R, Romano P (2007) A horizontal crack in a layered structure satisfies deformation for the 2004–2006 uplift of Campi Flegrei. Geophys Res Lett 34: L22313. doi:10.1029/2007GL031644 Anderson EM (1936) The dynamics of the formation of cone sheets, ring dykes and cauldron subsidence. Proc R Soc edinburgh 56:128–163 Avallone A, Zollo A, Briole P, Delacourt C, Beauducel F (1999) Subsidence of Campi Flegrei (Italy) detected by SAR interferometry. Geoph Res Lett 26(15):2303–2306 Barberi F, Cassano E, La Torre P, Sbrana A (1991) Structural evolution of Campi Flegrei caldera in light of volcanological and geophysical data. J Volcan Geoth Res 48(1–2):33–49 Bosworth W, Burke K, Strecker M (2003) Effect of stress fields on magma chamber stability and the formation of collapse calderas. Tectonics 22(4):1042 Browning J, Gudmundsson A, Meredith P (2013) The formation and role of caldera ring faults. In: Sonja L, Acocella V (eds) Rock fractures in geological processes. Abstract of the presentation of the Symposium, London 26–27 Nov, 2013, 61–64 Carlino S, Somma R (2010) Eruptive versus non-eruptive behavior of large calderas: the example of Campi Flegrei caldera (Southern Italy). Bull Volcanol 72:871–886. doi:10.1007/s00445-010-0370-y Carlino S, Somma R, Troise C, De Natale G (2012) The geothermal exploration of Campanian volcanoes: historical review and future development. Renew Sust Energ Rev 16:1004–1030 Carter L, Tsenn MC (1987) Flow properties of continental lithosphere. Tectonophysics 136(1–2):27–63 Cinque A, Irollo G, Romano P, Ruello MR, Amato L, Giampaola D (2011) Ground movements and sea level changes in urban areas: 5000 years of geological and archaeological record from Naples (Southern Italy). Quat Int 232(1–2):45–55 Costa F (2008) Residence times of silicic magmas associated with calderas. In: Gottsmann J, Marì J (eds) Caldera volcanism, analysis, modeling and response. Development in volcanology. Elsevier, 10:2–47 De Natale G, Troise C, Pingue F (2001) A mechanical fluid-dynamical model for ground movements at Campi Flegrei caldera. J Geophys Res 32:487–517 Dufek J, Huber C., Karlstrom L (2013) Magma chamber dynamics and thermodynamics. In: Fagents SA, Gregg TKP, Lopes RMC (eds) Modeling volcanic processes. Cambridge, 5–31. Gottsmann J, Battaglia M (2008) Deciphering causes of unrest at explosive collapse calderas: recent advances and future challenges of joint time-lapse gravimetric and ground deformation studies. In: Gottsmann G, Martì J (eds) Caldera volcanism, analysis, modeling and response. Elsevier, 417–446 Gudmundsson A (1988) Effect of tensile stress concentration around magma chambers on intrusion and extrusion frequencies. J Volcan Geoth Res 35:179–194 Gudmundsson A (1990) Emplacement of dikes, sills and crustal magma chambers at divergent plate boundaries. Tectonophysics 176:257–275 Gudmundsson A (1998) Formation and development of normal-fault calderas and the initiation of large explosive eruptions. Bull Volcanol 60:160–170 Gudmundsson A (2007) Conceptual and numerical models of ring-fault formation. J Volcan Geoth Res 164:142–160 Gudmundsson A (2008) Magma-chamber geometry, fluids transport, local stress and rock behavior during caldera formation. In: Gottsmann J, Marì J (eds) Caldera volcanism, analysis, modeling and response. Development in volcanology. Elsevier, 8:313–349 Gudmundsson A, Martí J, Turón E (1997) Stress fields generating ring faults in volcanoes. Geophys Res Lett 24:1559–1562 Hurwitz S, Christiansen Lizet B, Hsieh Paul A (2007) Hydrothermal fluid flow and deformation in large calderas: inferences from numerical simulation. J Geophys Res 112:B02206. doi:10.1029/2006JB004689 Jellinek MA, De Paolo DJ (2003) A model for the origin of large silicic magma chambers, precursors of caldera forming eruptions. Bull Volcanol 65:363–381 Lipman PW (1997) Subsidence of ash-flow calderas: relation to caldera size and magma-chamber geometry. Bull Volcanol 59:198–218 Locke WW, Meyer GA (1994) A 12,000 year record of vertical deformation across the Yellowstone caldera margin: the shorelines of Yellowstone Lake. J Geophys Res 99(B10):20079–20094 Marsh BD (2000) Magma chambers. In: Sigurdsson H, Houghton B, McNutt SR, Rymer H, Stix J (eds) Encyclopedia of volcanoes. Academic, San Diego, pp 191–206 Milia A, Turco E, Pierantoni PP, Schettino A (2009) Faur-dimensional tectono-stratigraphic evolution of the southeastern peri-Tyrrhenian Basins (Margin of Calabria, Italy). Tectonophysics 476:41–56 Newhall CG, Dzurisin D (1988) Historical unrest at large calderas of the world. U S Geol Sur Bull 2:1108 Papanikolaou ID, Roberts GP (2007) Geometry, kinematics and deformation rates along the active normal fault system in the southern Apennines: implications for fault growth. J Struct Geol 29:166–188 Rivalta E, Segall P (2008) Magma compressibility and the missing source for some dike intrusion. Geophys Res Lett. doi:10.1029/ 2007GL032521 Rubin AM (1995) Propagation of magma-filled cracks. Annu Rev Earth Planet Sci 23:287–336. doi:10.1146/annurev.ea.23.050195.001443 Schon JH (2004) Physical properties of rocks. Handbook of geophysical exploration. Elsevier, p. 583 Ugural AC (1981) Stresses in plates and shells. McGraw-Hill, New York, p 317 Walter TR (2008) Facilitating dike intrusion into ring faults. In: Gottsmann J, Marì J (eds) Caldera volcanism, analysis, modeling and response. Development in volcanology. Elsevier, 10, 352–371 Woo JYL, Kilburn CRJ (2010) Intrusion and deformation at Campi Flegrei, Southern Italy: sills, dikes and regional extension. J Geophys Res. doi:10.1029/2009JB006913 Zamora M, Sartoris G, Chelini W (1994) Laboratory measurements of ultrasonic wave velocities in rocks from the Campi Flegrei volcanic system and their relation to other field data. J Geophys Res 99: 13553–13561 Zoback MD (2007) Reservoir geomechanics. Cambridge University Press, p. 445 Zollo A, Maercklin N, Vassallo M, Dello Iacono D, Virieux J, Gasparini P (2008) Seismic reflections reveal a massive melt layer feeding Campi Flegrei caldera. Geophys Res Lett 35:L12306. doi:10.1029/ 2008GL034242en_US
dc.description.obiettivoSpecifico6V. Pericolosità vulcanica e contributi alla stima del rischioen_US
dc.description.journalTypeJCR Journalen_US
dc.relation.issn0258-8900en_US
dc.contributor.authorCarlino, Stefano-
dc.contributor.authorTramelli, Anna-
dc.contributor.authorSomma, Renato-
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italiaen_US
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italiaen_US
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italiaen_US
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.orcid0000-0002-3924-3881-
crisitem.author.orcid0000-0001-6259-5730-
crisitem.author.orcid0000-0002-2227-6054-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
2014_Carlino_CalderaSubsidenceInExtensional.pdf690.42 kBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

4
checked on Feb 10, 2021

Page view(s)

186
checked on Apr 27, 2024

Download(s)

1
checked on Apr 27, 2024

Google ScholarTM

Check

Altmetric