Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/14269
Authors: Lachatre, Mathieu* 
Mailler, Sylvain* 
Menut, Laurent* 
Turquety, Solene* 
Sellitto, Pasquale* 
Guermazi, Henda* 
Salerno, Giuseppe* 
Caltabiano, Tommaso* 
Carboni, Elisa* 
Title: New strategies for vertical transport in chemistry transport models: application to the case of the Mount Etna eruption on 18 March 2012 with CHIMERE v2017r4
Journal: Geoscientific Model Development 
Series/Report no.: 11/13 (2020)
Publisher: EGU - Copernicus
Issue Date: 2020
DOI: 10.5194/gmd-13-5707-2020
Subject Classification04.08. Volcanology 
Abstract: Excessive numerical diffusion is one of the major limitations in the representation of long-range transport by chemistry transport models. In the present study, we focus on excessive diffusion in the vertical direction, which has been shown to be a major issue, and we explore three possible ways of addressing this problem: increasing the vertical resolution, using an advection scheme with anti-diffusive properties and more accurately representing the vertical wind. This study was carried out using the CHIMERE chemistry transport model for the 18 March 2012 eruption of Mount Etna, which released about 3 kt of sulfur dioxide into the atmosphere in a plume that was observed by satellite instruments (the Infrared Atmospheric Sounding Interferometer instrument, IASI, and the Ozone Monitoring Instrument, OMI) for several days. The change from the classical Van Leer (1977) scheme to the Després and Lagoutière (1999) anti-diffusive scheme in the vertical direction was shown to provide the largest improvement to model outputs in terms of preserving the thin plume emitted by the volcano. To a lesser extent, the improved representation of the vertical wind field was also shown to reduce plume dispersion. Both of these changes helped to reduce vertical diffusion in the model as much as a brute-force approach (increasing vertical resolution).
Appears in Collections:Article published / in press

Files in This Item:
File Description SizeFormat
Lachatre et al., 2020.pdf2.3 MBAdobe PDFView/Open
Show full item record

Page view(s)

188
checked on Apr 24, 2024

Download(s)

12
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric