Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/13389
DC FieldValueLanguage
dc.date.accessioned2020-03-06T07:28:30Z-
dc.date.available2020-03-06T07:28:30Z-
dc.date.issued2019-05-03-
dc.identifier.urihttp://hdl.handle.net/2122/13389-
dc.description.abstractThe slopes of Etna are crossed by numerous active faults that traverse various towns and villages. These faults pose a two-fold problem for the local people: on one hand, they cause frequent damage to houses and breakage of roads, while on the other they constitute a preferential route for the rising of crustal and sub-crustal gases, including radon, toward the surface. Various recent studies on the volcano confirm a high level of radon degassing measured both in the soil (> 10,000 Bq/m3), and inside homes (> 2,000 Bq/m3). For this reason, we felt the need to deepen our knowledge on the radon present in the Etnean area, focusing in particular on indoor radon pollution that, as widely recognized, is among the main causes of cancer largely (but not exclusively) of the respiratory system. Firstly, since 2005 we made a broad surface survey that revealed very high radon emissions from soils near active faults on Etna. Typical background soil activity on Etna were <1,000 Bq/m3, whereas in areas of stronger soil degassing, activity values up to ~60,000 Bq/m3 were measured. Furthermore, since late 2015 we have performed continuous indoor radon monitoring inside seven houses, some of which located close to degassing faults on the eastern, southern and south-western flanks of the volcano. Indoor radon concentration varied according to the season of the year, but above all, they changed according to the geology and tectonic setting of the substratum of the monitored houses. In one case, indoor radon concentration reached 3,549 Bq/m3 and remained > 1,000 Bq/m3 for several consecutive months, highlighting a potential health problem for those living in such environments. In other cases, the construction features of the houses and/or the materials used seemed to play an important role in the mitigation of indoor radon accumulation, even in the presence of intensely degassing soils. These preliminary data demonstrate the need to deepen the studies, extending indoor radon measurements to other urban areas, in order to monitor the health hazard for the Etna population, amounting to about one million people.en_US
dc.language.isoEnglishen_US
dc.relation.ispartofFrontiers in public healthen_US
dc.relation.ispartofseries/7 (2019)en_US
dc.rightsCC0 1.0 Universal*
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.subjectEtna; cancer; human health; indoor pollution; radonen_US
dc.titlePreliminary Indoor Radon Measurements Near Faults Crossing Urban Areas of Mt. Etna Volcano (Italy)en_US
dc.typearticleen
dc.description.statusPublisheden_US
dc.description.pagenumberArticle 105en_US
dc.identifier.doi10.3389/fpubh.2019.00105en_US
dc.relation.references1. Dubois C, Alvarez Calleja A, Bassot S, Chambaudet A. Modelling the 3-dimensional microfissure network in quartz in a thin section of granite. In: Dubois C, editor. Gas Geochemistry. Northwood: Science Reviews (1995). p. 357–68. Google Scholar 2. Conner C, Hill B, LaFemina P, Navarro M, Conway M. Soil 222Rn pulse during the initial phase of the June-August 1995 eruption of Cerro Negro, Nicaragua. J Volcan Geotherm Res. (1996) 73:119–27. Google Scholar 3. Crenshaw WB, Williams SN, Stoiber RE. Fault location by radon and mercury detection at an active volcano in Nicaragua. Nature. (1982) 300:345–6. Google Scholar 4. Aubert M, Baubron JC. Identification of a hidden thermal fissure in a volcanic terrain using a combination of hydrothermal convection indicators and soil-atmosphere analysis. J Volcanol Geoth Res. (1988) 35:217–25. Google Scholar 5. Atallah MY, Al-Bataina BA, Mustafa H. Radon emanation along the Dead Sea transform (rift) in Jordan. Environ Geol. (2001) 40:1440–6. doi: 10.1007/s002540100337 CrossRef Full Text | Google Scholar 6. Baubron J-C, Rigo A, Toutain J-P. Soil gas profiles as a tool to characterise active tectonic areas: the Jaut Pass example (Pyrenees, France). Earth Planet Sci Lett. (2002) 196:69–81. doi: 10.1016/S0012-821X(01)00596-9 CrossRef Full Text | Google Scholar 7. Ajari TR, Adepelumi AA. Reconnaissance soil-gas Radon survey over faulted crystalline area of ile-Ife, Nigeria. Environ. Geol. (2002) 41:608–13. doi: 10.1007/s002540100428 CrossRef Full Text | Google Scholar 8. Del Negro C, Cappello A, Neri M, Bilotta G, Hérault A, Ganci G. Lava flow hazards at Etna volcano: constraints imposed by eruptive history and numerical simulations. Sci Rep Nat. (2013) 3:3493. doi: 10.1038/srep03493 CrossRef Full Text | Google Scholar 9. Giammanco S, Immè G, Mangano G, Morelli D, Neri M. Comparison between different methodologies for detecting Radon in soil along an active fault: the case of the Pernicana fault system, Mt. Etna Appl Radiat Isotopes. (2009) 67:178–85. doi: 10.1016/j.apradiso.2008.09.007 PubMed Abstract | CrossRef Full Text | Google Scholar 10. Neri M, Giammanco S, Ferrera E, Patanè G, Zanon V. Spatial distribution of soil radon as a tool to recognize active faulting on an active volcano: the example of Mt. Etna (Italy) J Environ Radioact. (2011) 102:863–70. doi: 10.1016/j.jenvrad.2011.05.002 PubMed Abstract | CrossRef Full Text | Google Scholar 11. Neri M, Ferrera E, Giammanco S, Currenti G, Cirrincione R, Patanè G, et al. Soil radon measurements as a potential tracer of tectonic and volcanic activity. Sci Rep. (2016) 6:24581. doi: 10.1038/srep24581 PubMed Abstract | CrossRef Full Text | Google Scholar 12. Burton M, Neri M, Condarelli D. High spatial resolution radon measurements reveal hidden active faults on Mt. Etna. Geophys Res Lett. (2004) 31:L07618. doi: 10.1029/2003GL019181 CrossRef Full Text | Google Scholar 13. Neri M, Guglielmino F, Rust D. Flank instability on Mount Etna: radon, radar interferometry, and geodetic data from the southern boundary of the unstable sector. J Geophys Res. (2007) 112:B04410. doi: 10.1029/2006JB004756 CrossRef Full Text | Google Scholar 14. Siniscalchi A, Tripaldi S, Neri M, Giammanco S, Piscitelli S, Balasco M, et al. Insights into fluid circulation across the Pernicana Fault (Mt. Etna, Italy) and implications for flank instability. J Volcanol Geotherm Res. (2010) 193:137–42. doi: 10.1016/j.jvolgeores.2010.03.013 CrossRef Full Text | Google Scholar 15. Urlaub M, Petersen F, Gross F, Bonforte A, Puglisi G, Guglielmino F. Gravitational collapse of Mount Etna's southeastern flank. Sci Adv. (2018) 4:9700. doi: 10.1126/sciadv.aat9700 PubMed Abstract | CrossRef Full Text | Google Scholar 16. Solaro G, Acocella V, Pepe S, Ruch J, Neri M, Sansosti E. Anatomy of an unstable volcano through InSAR data: multiple processes affecting flank instability at Mt. Etna in 1994–2008. J. Geophys. Res. (2010) 115:B10405. doi: 10.1029/2009JB000820 CrossRef Full Text | Google Scholar 17. Barreca G, Bonforte A, Neri M. A pilot GIS database of active faults of Mt. Etna (Sicily): A tool for integrated hazard evaluation. J Volcanol Geotherm Res. (2013) 251:170–86. doi: 10.1016/j.jvolgeores.2012.08.013 CrossRef Full Text | Google Scholar 18. Neri M, Casu F, Acocella V, Solaro G, Pepe S, Berardino P, et al. Deformation and eruptions at Mt. Etna (Italy): a lesson from 15 years of observations. Geophys. Res. Lett. (2009) 36:L02309. doi: 10.1029/2008GL036151 CrossRef Full Text | Google Scholar 19. Siniscalchi A, Tripaldi S, Neri M, Balasco M, Romano G, Ruch J, et al. Flank instability structure of Mt Etna inferred by a magnetotelluric survey. J Geophys Res. (2012) 117:B03216. doi: 10.1029/2011JB008657 CrossRef Full Text | Google Scholar 20. Alparone S, Behncke B, Giammanco S, Neri M, Privitera E. Paroxysmal summit activity at Mt. Etna monitored through continuous soil radon measurements. Geophys Res Lett. (2005) 32:L16307. doi: 10.1029/2005GL023352 CrossRef Full Text | Google Scholar 21. Neri M, Behncke B, Burton M, Giammanco S, Pecora E, Privitera E, Reitano D. Continuous soil radon monitoring during the July 2006 Etna eruption. Geophys. Res. Lett. (2006) 33:L24316. doi: 10.1029/2006GL028394 CrossRef Full Text | Google Scholar 22. Falsaperla S, Neri M, Di Grazia G, Langer H, Spampinato S. What happens to in-soil Radon activity during a long-lasting eruption? Insights from Etna by multidisciplinary data analysis. Geochem Geophys Geosyst. (2017) 18:6825. doi: 10.1002/2017GC006825 CrossRef Full Text | Google Scholar 23. Baxter PJ. Medical effects of volcanic eruptions: 1. Main causes of death and injury. Bull Volcanol. (1990) 52:532–44. Google Scholar 24. Muirhead CR. Radon risks. Lancet. (1994) 344:143–4. PubMed Abstract | Google Scholar 25. Baxter PJ, Baudron JC, Coutinho R. Health hazards and disaster potential of ground gas emissions at Furnas volcano, Sao Miguel, Azores. J Volcanol Geotherm Res. (1999) 92:95–106. Google Scholar 26. Rodríguez-Martínez A, Torres-Durán M, Barros-Dios JM, Ruano-Ravina A. Residential radon and small cell lung cancer. A systematic review Cancer Lett. (2018) 426:57–62. doi: 10.1016/j.canlet.2018.04.003 PubMed Abstract | CrossRef Full Text | Google Scholar 27. Gray A, Read S, McGale P, Darby S. Lung cancer deaths from indoor radon and the cost effectiveness and potential of policies to reduce them. Br Med J. (2009) 338:a3110. PubMed Abstract | Google Scholar 28. Tong J, Qin L, Cao Y, Li J, Zhang J, Nie J, et al. Environmental radon exposure and childhood leukemia. J Toxicol Environ Health B Crit Rev. (2012) 15:332–47. doi: 10.1080/10937404.2012.689555 PubMed Abstract | CrossRef Full Text | Google Scholar 29. Oancea SC, Rundquist BC, Simon I, Swartz S, Zheng Y, Zhou XD, et al. County level incidence rates of chronic lymphocytic leukemia are associated with residential radon levels. Fut Oncol. (2017) 13:1873–81. doi: 10.2217/fon-2017-0165 PubMed Abstract | CrossRef Full Text | Google Scholar 30. Health Protection Agency. Radon and Public Health—Report of the independent Advisory Group on Ionizing Radiation. Documents of the Health Protection Agency (2009). Google Scholar 31. Brogna A, La Delfa S, La Monaca V, Lo Nigro S, Morelli D, Patanè G, et al. Measurements of indoor radon concentration on the south-eastern flank of Mount Etna volcano (Southern Italy). J Volcanol Geotherm Res. (2007) 165:71–5. doi: 10.1016/j.jvolgeores.2007.04.012 CrossRef Full Text | Google Scholar 32. La Delfa S, Agostino I, Morelli D, Patanè G. Soil radon concentration, effective stress variation at Mt. Etna (Sicily) in the period January 2003–April 2005. Rad. Meas. (2008) 43:1299–304. Google Scholar 33. WHO. WHO Handbook on Indoor Radon: A Public Health. Geneva: World Health Organization (2009). Google Scholar 34. Bonforte A, Federico C, Giammanco S, Guglielmino F, Liuzzo M, Neri M. Soil gases and SAR data reveal hidden faults on the sliding flank of Mt. Etna (Italy). J Volcanol Geotherm Res. (2013) 251:27–40. doi: 10.1016/j.jvolgeores.2012.08.010 CrossRef Full Text | Google Scholar 35. Giammanco S, Inguaggiato S, Valenza M. Soil and fumarole gases of Mount Etna: Geochemistry and relations with volcanic activity. J Volcanol Geotherm Res. (1998) 81:297–310. Google Scholar 36. Giammanco S, Parello F, Gambardella B, Schifano R, Pizzullo S, Galante G. Focused and diffuse effluxes of CO2 from mud volcanoes and mofettes south of Mt. Etna (Italy). J Volcanol Geotherm Res. (2007) 165:46–63. doi: 10.1016/j.jvolgeores.2007.04.010 CrossRef Full Text | Google Scholar 37. Chiodini G, D'Alessandro W, Parello F. Geochemistry of the gases and of the waters discharged by the mud volcanoes of paternò, Mt. Etna (Italy). Bull Volcanol. (1996) 58:51–8. Google Scholar 38. Pecoraino G, Giammanco S. Geochemical characterization and temporal changes in parietal gas emissions at Mt. Etna (Italy) during the period July 2000–July 2003. Terr Atmosph Ocean Sci. (2005) 16:805–41. doi: 10.3319/TAO.2005.16.4.805(GIG) CrossRef Full Text | Google Scholar 39. Giammanco S, Neri M, Salerno G, Caltabiano T, Burton MR, Longo V. Evidence for a recent change in the shallow plumbing system of Mt. Etna (Italy): gas geochemistry and structural data during 2001–2005. J Volcanol Geotherm Res. (2013) 251:90–7. doi: 10.1016/j.jvolgeores.2012.06.001 CrossRef Full Text | Google Scholar 40. D'Alessandro W, Parello F. Soil degassing from the lower flanks of Mt. Etna. In: Dubois C, editor. Gas Geochemistry. Northwood: Science Reviews (1995). p. 189–201. Google Scholar 41. Calvari S, Tanner LH, Groppelli G. Debris-avalanche deposits of the Milo Lahar sequence and the opening of the Valle del Bove on Etna volcano (Italy). J Volcanol Geotherm Res. (1998) 87:193–209. Google Scholar 42. Falsaperla S, Behncke B, Langer H, Neri M, Salerno G, Giammanco S, et al. “Failed” eruptions revealed by the study of gas emission and volcanic tremor data at Mt. Etna, Italy. Int J Earth Sci. (2014) 103:297–313. doi: 10.1007/s00531-013-0964-7 CrossRef Full Text | Google Scholar 43. Vaupotič J, Žvab P, Giammanco S. Radon in outdoor air in the Mt. Etna area, Italy. Nukleonika. (2010) 55:573–7. Google Scholar 44. La Delfa S, Vizzini F, Patane G. Radon migration into different building types at medium and low south-eastern flank of Mt Etna (Sicily): connection with the volcanic activity. Environ Earth Sci. (2012) 66:923–31. doi: 10.1007/s12665-011-1302-7 CrossRef Full Text | Google Scholar 45. Darby S, Hill D, Auvinen A, Barros-Dios JM, Baysson H, Bochicchio F, et al. Radon in homes and risk of lung cancer: collaborative analysis of individual data from 13 European case-control studies. Br Med J. (2005) 330:223–7. doi: 10.1136/bmj.38308.477650.63 PubMed Abstract | CrossRef Full Text | Google Scholar 46. Darby S, Hill D, Deo H, Auvinen A, Barros-Dios JM, Baysson H, et al. Residential radon and lung cancer: detailed results of a collaborative analysis of individual data on 7148 subjects with lung cancer and 14208 subjects without lung cancer from 13 epidemiologic studies in Europe. Scand J Work Environ Health. (2006) 32 (Suppl. 1):1–83. Google Scholar 47. UNSCEAR. Ionizing Radiation: Sources and Biological Effects. United Nations Scientific Committee on the Effects of Atomic Radiation. New York, NY: United Nations Publication (1982). Google Scholar 48. UNSCEAR. Sources and Effects of Ionizing Radiation. United Nations Scientific Committee on the Effects of Atomic Radiation. New York, NY: United Nations Publication (2000). PubMed Abstract | Google Scholar 49. Oikawa S, Kanno N, Sanada T, Abukawa J, Higuchi H. A survey of indoor workplace radon concentration in Japan. J Environ Radioact. (2006) 87:239–45. doi: 10.1016/j.jenvrad.2005.12.001 PubMed Abstract | CrossRef Full Text | Google Scholar 50. Groves-Kirkby CJ, Denman AR, Phillips PS, Crockett RGM, Sinclair JM. Comparison of seasonal variability in European domestic radon measurements. Nat Hazards Earth Syst Sci. (2010) 10:565–9. doi: 10.5194/nhess-10-565-2010 CrossRef Full Text | Google Scholar 51. Marchese F, Neri M, Falconieri A, Lacava T, Mazzeo G, Pergola N, et al. The contribution of multi-sensor infrared satellite observations in studying well-monitored volcanoes: the case of May-August 2016 Mt. Etna activity. Rem Sens. (2018) 10:1948. doi: 10.3390/rs10121948 CrossRef Full Text | Google Scholaren_US
dc.description.obiettivoSpecifico2V. Struttura e sistema di alimentazione dei vulcanien_US
dc.description.obiettivoSpecifico6V. Pericolosità vulcanica e contributi alla stima del rischioen_US
dc.description.obiettivoSpecifico6A. Geochimica per l'ambiente e geologia medicaen_US
dc.description.journalTypeJCR Journalen_US
dc.contributor.authorNeri, Marco-
dc.contributor.authorGiammanco, Salvatore-
dc.contributor.authorLeonardi, Anna-
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italiaen_US
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italiaen_US
dc.contributor.departmentFreelance Geologist, Aci Castello, Italyen_US
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia-
crisitem.author.deptFreelance Geologist, Aci Castello, Italy-
crisitem.author.orcid0000-0002-5890-3398-
crisitem.author.orcid0000-0003-2588-1441-
crisitem.author.orcid0000-0002-9984-3651-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat
2019 Neri Giammanco Leonardi Front Pub Health 2019.pdfOriginal Article10.71 MBAdobe PDFView/Open
Show simple item record

WEB OF SCIENCETM
Citations

5
checked on Feb 10, 2021

Page view(s)

864
checked on Apr 27, 2024

Download(s)

22
checked on Apr 27, 2024

Google ScholarTM

Check

Altmetric