Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/13369
DC FieldValueLanguage
dc.date.accessioned2020-03-03T13:17:33Z-
dc.date.available2020-03-03T13:17:33Z-
dc.date.issued2019-
dc.identifier.urihttp://hdl.handle.net/2122/13369-
dc.description.abstractCentral–southern Italy is one of the most suitable areas in the world for tephrostratigraphic studies, owing to the numerous volcanic sources with explosive activity during the Pleistocene. This work presents a systematic investigation of the chemical (trace elements) and isotopic (Sr and Nd) compositions of the main tephra markers within lacustrine sediments of the San Gregorio Magno Basin (Campania, southern Italy). This study: (i) provides full geochemical (trace elements and isotopes) characterization of eight significant Upper Pleistocene marker layers (X‐6, X‐5, C‐22, MEGT/ Y‐7, CI/Y‐5, C‐10, Y‐3, NYT/C2) widely dispersed over the Mediterranean area; (ii) proposes a new tephra marker for Marine Isotope Stage 7, dated to 240 ka; and (iii) refines the correlations of tephra levels belonging to the investigated sequence. This study highlights that in most cases the Nd isotope composition of the glass and Sr isotope composition of the coexisting minerals are more reliable than 87Sr/86Sr of the glass, and hence is a more helpful as a further tool for tephrostratigraphic correlations, as recently proposed in the literature. Moreover, this study is a first step towards the construction of a complete geochemical database for future tephra investigations in the Mediterranean area.en_US
dc.language.isoEnglishen_US
dc.publisher.nameJohn Wiley & Sonsen_US
dc.relation.ispartofJournal of Quaternary Scienceen_US
dc.relation.ispartofseries6/34 (2019)en_US
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.subjectisotope geochemistryen_US
dc.subjectLA‐ICP‐MSen_US
dc.subjectNeapolitan volcanoesen_US
dc.subjectSan Gregorio Magno Basinen_US
dc.subjectSr and Nd isotopesen_US
dc.subjecttephraen_US
dc.titleThe San Gregorio Magno lacustrine basin (Campania, southern Italy): improved characterization of the tephrostratigraphic markers based on trace elements and isotopic dataen_US
dc.typearticleen
dc.description.statusPublisheden_US
dc.type.QualityControlPeer-revieweden_US
dc.description.pagenumber393-404en_US
dc.identifier.doi10.1002/jqs.3107en_US
dc.relation.referencesAiello G, Ascione A, Barra D, et al. 2007. Evolution of the late Quaternary San Gregorio Magno tectono‐karstic basin (southern Italy) inferred from geomorphological, tephrostratigraphical and palaeoecological analyses: tectonic implications. Journal of Quaternary Science 22: 233–245. https://doi.org/10.1002/jqs.1040 Albert PG, Hardiman M, Keller J, et al. 2015. Revisiting the Y‐3 tephrostratigraphic marker: a new diagnostic glass geochemistry, age estimate, and details on its climatostratigraphical context. Quaternary Science Reviews 118: 105–121. https://doi.org/10.1016/ j.quascirev.2014.04.002 Amato V, Aucelli PPC, Cesarano M, et al. 2018. Geomorphic response to late Quaternary tectonics in the axial portion of the Southern Apennines (Italy): A case study from the Calore River valley. Earth Surface Processes and Landforms 43: 2463–2480. https://doi.org/10. 1002/esp.4390 Arienzo I, Carandente A, Di Renzo V, et al. 2013. Sr and Nd isotope analysis at the radiogenic isotope laboratory of the Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Napoli ‐ Osservatorio Vesuviano. Rapporti Tecnici INGV 260 istituto.ingv. it/l‐ingv/produzione‐scientifica/rapporti‐tecnici‐ingv/archivio/ rapporti‐tecnici‐2013/ Ascione A, Cinque A, Improta L, et al. 2003. Late Quaternary faulting within the Southern Apennines seismic belt: new data from Mt Q5 Marzano area. Quaternary International 102: 27–41. Ascione A, Mazzoli S, Petrosino P, et al. 2013. A decoupled kinematic model for active normal faults: insights from the 1980, MS = 6.9 Irpinia earthquake, southern Italy. Geological Society of America Bulletin 125: 1239–1259. https://doi.org/10.1130/B30814.1 Ayuso RA, DeVivo B, Rolandi G, et al. 1998. Geochemical and isotopic (Nd–Pb–Sr–O) variations bearing on the genesis of volcanic rocks from Vesuvius, Italy. Journal of Volcanology and Geothermal Research 82: 53–78. https://doi.org/10.1016/S0377‐0273(97)00057‐7 Barbieri M, Boschetti T, Petitta M, et al. 2005. Stable isotope (2H, 18O and 87Sr/86Sr) and hydrochemistry monitoring for groundwater hydrodynamics analysis in a karst aquifer (Gran Sasso, Central Italy). Applied Geochemistry 20: 2063–2081. https://doi.org/10.1016/j. apgeochem.2005.07.008 Belkin HE, Rolandi G, Jackson JC, et al. 2016. Mineralogy and geochemistry of the older ( > 40 ka) ignimbrites on the Campanian Plain, southern Italy. Journal of Volcanology and Geothermal Research 323: 1–18. https://doi.org/10.1016/j.jvolgeores.2016.05.002 Bourne AJ, Albert PG, Matthews IP, et al. 2015. Tephrochronology of core PRAD 1‐2 from the Adriatic Sea: insights into Italian explosive volcanism for the period 200–80 ka. Quaternary Science Reviews 116: 28–43. https://doi.org/10.1016/j.quascirev.2015.03.006 Bourne AJ, Lowe JJ, Trincardi F, et al. 2010. Distal tephra record for the last ca 105,000 years from core PRAD 1–2 in the central Adriatic Sea: implications for marine tephrostratigraphy. Quaternary Science Reviews 29: 3079–3094. https://doi.org/10.1016/j.quascirev.2010.07.021 Boynton WV. 1984. Cosmochemistry of the rare earth elements: meteorite studies. In Developments in Geochemistry, Henderson P (ed). Elsevier: Amsterdam; 63–114. Brown RJ, Civetta L, Arienzo I, et al. 2014. Geochemical and isotopic insights into the assembly, evolution and disruption of a magmatic plumbing system before and after a cataclysmic caldera‐collapse eruption at Ischia volcano (Italy). Contributions to Mineralogy and Petrology 168: 1–23. https://doi.org/10.1007/s00410‐014‐1035‐1 Brown RJ, Orsi G, DeVita S. 2008. New insights into Late Pleistocene explosive volcanic activity and caldera formation on Ischia (southern Italy). Bulletin of Volcanology 70: 583–603. https://doi. org/10.1007/s00445‐007‐0155‐0 Civetta L, Orsi G, Pappalardo L, et al. 1997. Geochemical zoning, mingling, eruptive dynamics and depositional processes‐the Campanian Ignimbrite, Campi Flegrei caldera, Italy. Journal of Volcanology and Geothermal Research 75: 183–219. https://doi.org/10.1016/ S0377‐0273(96)00027‐3 D’Antonio M, Civetta L, Orsi G, et al. 1999. The present state of the magmatic system of the Campi Flegrei caldera based on a reconstruction of its behavior in the past 12 ka. Journal of Volcanology and Geothermal Research 91: 247–268. https://doi. org/10.1016/S0377‐0273(99)00038‐4 D’Antonio M, Mariconte R, Arienzo I, et al. 2016. Combined Sr‐Nd isotopic and geochemical fingerprinting as a tool for identifying tephra layers: application to deep‐sea cores from eastern Mediterranean Sea. Chemical Geology 443: 121–136. https://doi.org/10.1016/j.chemgeo. 2016.09.022 D’Antonio M, Tonarini S, Arienzo I, et al. 2013. Mantle and crustal processes in the magmatism of the Campania region: inferences from mineralogy, geochemistry, and Sr–Nd–O isotopes of young hybrid volcanics of the Ischia island (South Italy). Contributions to Mineralogy and Petrology 165: 1173–1194. https://doi.org/10.1007/ s00410‐013‐0853‐x Damaschke M, Sulpizio R, Zanchetta G, et al. 2013. Tephrostratigraphic studies on a sediment core from Lake Prespa in the Balkans. Climate Q6 of the Past 9: 267–287. https://doi.org/10.5194/cp‐9‐267‐2013 Melluso L, De’ Gennaro R, Fedele L, et al. 2012. Evidence of crystallization in residual, Cl–F‐rich, agpaitic, trachyphonolitic magmas and primitive Mgrich basalt‐trachyphonolite interaction in the lava domes of the Phlegrean Fields (Italy). Geological Magazine 149: 532–550. deVita S, Orsi G, Civetta L, et al. 1999. The Agnano–Monte Spina eruption (4100 years BP) in the restless Campi Flegrei caldera (Italy). Journal of Volcanology and Geothermal Research 91: 269–301. https://doi.org/10.1016/S0377‐0273(99)00039‐6 DeVivo B, Rolandi G, Gans PB, et al. 2001. New constraints on the pyroclastic eruptive history of the Campanian volcanic Plain (Italy). Mineralogy and Petrology 73: 47–65. https://doi.org/10.1007/ s007100170010 Deino AL, Orsi G, deVita S, et al. 2004. The age of the Neapolitan Yellow Tuff caldera‐forming eruption (Campi Flegrei caldera – Italy) assessed by 40Ar/39Ar dating method. Journal of Volcanology and Geothermal Research 133: 157–170. https://doi.org/ 10.1016/S0377‐0273(03)00396‐2 Di Renzo V, Arienzo I, Civetta L, et al. 2011. The magmatic feeding system of the Campi Flegrei caldera: architecture and temporal evolution. Chemical Geology 281: 227–241. https://doi.org/10.1016/ j.chemgeo.2010.12.010 Di Renzo V, Di Vito MA, Arienzo I, et al. 2007. Magmatic history of Somma–Vesuvius on the basis of new geochemical and isotopic data from a deep borehole (Camaldoli della Torre). Journal of Petrology 48: 753–784. https://doi.org/10.1093/petrology/egl081 Di Vito MA, Arienzo I, Braia G, et al. 2011. The Averno 2 fissure eruption: a recent small‐size explosive event at the Campi Flegrei caldera (Italy). Bulletin of Volcanology 73: 295–320. https://doi.org/ 10.1007/s00445‐010‐0417‐0 Di Vito MA, Sulpizio R, Zanchetta G, et al. 2008. The Late Pleistocene pyroclastic deposits of the Campanian Plain: new insights into the explosive activity of Neapolitan volcanoes. Journal of Volcanology and Geothermal Research 177: 19–48. https://doi.org/10.1016/j. jvolgeores.2007.11.019 Donato P, Albert PG, Crocitti M, et al. 2016. Tephra layers along the southern Tyrrhenian coast of Italy: links to the X‐5 & X‐6 using volcanic glass geochemistry. Journal of Volcanology and Geothermal Research 317: 30–41. https://doi.org/10.1016/j.jvolgeores.2016.02.023 Dutton A, Bard E, Antonioli F, et al. 2009. Phasing and amplitude of sea‐level and climate change during the penultimate interglacial. Nature Geoscience 2: 355–359. https://doi.org/10.1038/ngeo470 Frezzotti M, Narcisi B. 1996. Late Quaternary tephra‐derived paleosols in Central Italy’s carbonate Apennine range: stratigraphi- Q7 cal and paleoclimatological implications. Quaternary International 34–36: 147–153. https://doi.org/10.1016/1040‐6182(95)00079‐8 Giaccio B, Arienzo I, Sottili G, et al. 2013. Isotopic (Sr–Nd) and major element fingerprinting of distal tephras: an application to the Middle‐Late Pleistocene markers from the Colli Albani volcano, central Italy. Quaternary Science Reviews 67: 190–206. https://doi. org/10.1016/j.quascirev.2013.01.028 Giaccio B, Galli P, Peronace E, et al. 2014. A 560–440 ka tephra record from the Mercure Basin, southern Italy: volcanological and tephrostratigraphic implications. Journal of Quaternary Science 29: 232–248. https://doi.org/10.1002/jqs.2696 Giaccio B, Isaia R, Fedele FG, et al. 2008. The Campanian Ignimbrite and Codola tephra layers: two temporal/stratigraphic markers for Early Upper Palaeolithic in southern Italy and eastern Europe. Journal of Volcanology and Geothermal Research 177: 208–226. https://doi.org/10.1016/j.jvolgeores.2007.10.007 Giaccio B, Niespolo EM, Pereira A, et al. 2017. First integrated tephrochronological record for the last ∼190 kyr from the Fucino Quaternary lacustrine succession, central Italy. Quaternary Science Reviews 158: 211–234. https://doi.org/10.1016/j.quascirev.2017.01.004 Giaccio B, Nomade S, Wulf S, et al. 2012. The late MIS 5 Mediterranean tephra markers: a reappraisal from peninsular Italy terrestrial records. Quaternary Science Reviews 56: 31–45. https:// doi.org/10.1016/j.quascirev.2012.09.009 Insinga DD, Tamburrino S, Lirer F, et al. 2014. Tephrochronology of the astronomically‐tuned KC01B deep‐sea core, Ionian Sea: insights into the explosive activity of the Central Mediterranean area during the last 200 ka. Quaternary Science Reviews 85: 63–84. https://doi. org/10.1016/j.quascirev.2013.11.019 Iorio M, Capretto G, Petruccione E, et al. 2014. Multi‐proxy analysis in defining sedimentary processes in very recent prodelta deposits: the Northern Phlegraean offshore example (eastern Tyrrhenian Margin). Rendiconti Lincei 25: 237–254. https://doi.org/10.1007/s12210‐ 014‐0303‐3 ITHACA. 2015. www.isprambiente.gov.it/it/progetti Last accessed 5 April 2018. Keller J, Ryan WBF, Ninkovich D, et al. 1978. Explosive volcanic activity in the Mediterranean over the past 200,000 yr as recorded in deep‐sea sediments. Geological Society of America Bulletin 89: 591–604. https:// doi.org/10.1130/0016‐7606(1978)89<591:EVAITM>2.0.CO;2 Le Maitre RW. 2005. Igneous Rocks. A Classification and Glossary of Terms. Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks. Cambridge University Press: Cambridge. Lirer F, Sprovieri M, Ferraro L, et al. 2013. Integrated stratigraphy for the Late Quaternary in the eastern Tyrrhenian Sea. Quaternary International 292: 71–85. https://doi.org/10.1016/j.quaint.2012.08.2055 Lustrino M, Duggen S, Rosenberg CL. 2011. The Central–Western Mediterranean: anomalous igneous activity in an anomalous collisional tectonic setting. Earth‐Science Reviews 104: 1–40. https://doi.org/10.1016/j.earscirev.2010.08.002 Lyubetskaya T, Korenaga J. 2007. Chemical composition of Earth’s primitive mantle and its variance: 1. Method and results. Journal of Geophysical Research 112: 1–21. https://doi.org/10.1029/ 2005JB004223 Marra F, Taddeucci J, Freda C, et al. 2004. Recurrence of volcanic activity along the Roman Comagmatic Province (Tyrrhenian margin of Italy) and its tectonic significance. Tectonics 23: TC 4013. Matthews IP, Trincardi F, Lowe JJ, et al. 2015. Developing a robust Q8 tephrochronological framework for Late Quaternary marine records in the southern Adriatic Sea: new data from core station SA03‐11. Quaternary Science Reviews 118: 84–104. https://doi.org/10.1016/j. quascirev.2014.10.009 Mazzeo FC, D’Antonio M, Arienzo I, et al. 2014. Subduction‐related enrichment of the Neapolitan volcanoes (Southern Italy) mantle source: new constraints on the characteristics of the slab‐derived components. Chemical Geology 386: 165–183. https://doi.org/10. 1016/j.chemgeo.2014.08.014 Morabito S, Petrosino P, Milia A, et al. 2014. A multidisciplinary approach for reconstructing the stratigraphic framework of the last 40ka in a bathyal area of the eastern Tyrrhenian Sea. Global and Planetary Change 123: 121–138. https://doi.org/10.1016/j.gloplacha.2014.10.005 Munno R, Petrosino P. 2007. The Late Quaternary tephrostratigraphical record of the San Gregorio Magno basin (southern Italy). Journal of Quaternary Science 22: 247–266. https://doi.org/10.1002/ jqs.1025 Orsi G, deVita S, Di Vito M. 1996. The restless, resurgent Campi Flegrei nested caldera (Italy): constraints on its evolution and configuration. Journal of Volcanology and Geothermal Research 74: 179–214. https://doi.org/10.1016/S0377‐0273(96)00063‐7 Orsi G, Gallo G, Zanchi A. 1991. Simple‐shearing block resurgence in caldera depressions. A model from Pantelleria and Ischia. Journal of Volcanology and Geothermal Research 47: 1–11. https://doi.org/10. 1016/0377‐0273(91)90097‐J Pabst S, Wörner G, Civetta L, et al. 2008. Magma chamber evolution prior to the Campanian ignimbrite and Neapolitan Yellow Tuff eruptions (Campi Flegrei, Italy). Bulletin of Volcanology 70: 961–976. https://doi.org/10.1007/s00445‐007‐0180‐z Pappalardo L, Civetta L, D’Antonio M, et al. 1999. Chemical and Srisotopical evolution of the Phlegraean magmatic system before the Campanian Ignimbrite and the Neapolitan Yellow Tuff eruptions. Journal of Volcanology and Geothermal Research 91: 141–166. https://doi.org/10.1016/S0377‐0273(99)00033‐5 Paterne M, Guichard F, Duplessy JC, et al. 2008. A 90,000–200,000 yrs marine tephra record of Italian volcanic activity in the Central Mediterranean Sea. Journal of Volcanology and Geothermal Research 177: 187–196. https://doi.org/10.1016/j.jvolgeores.2007.11.028 Paterne M, Guichard F, Labeyrie J. 1988. Explosive activity of the South Italian volcanoes during the past 80,000 years as determined by marine tephrochronology. Journal of Volcanology and Geothermal Research 34: 153–172. https://doi.org/10.1016/0377‐0273(88)90030‐3 Peccerillo A. 2017. Cenozoic Volcanism in the Tyrrhenian Sea Region. Springer International: Berlin. Petrelli M, Bizzarri R, Morgavi D, et al. 2017. Combining machine learning techniques, microanalyses and large geochemical datasets for tephrochronological studies in complex volcanic areas: new age constraints for the Pleistocene magmatism of Central Italy. Quaternary Geochronology 40: 33–44. https://doi.org/10.1016/j.quageo.2016.12.003 Petrelli M, Morgavi D, Vetere F, et al. 2016. Elemental imaging and petro‐volcanological applications of an improved laser ablation inductively coupled quadrupole plasma mass spectrometry. Periodico di Mineralogia 85: 25–39. Petrosino P. 2016. Il distretto vulcanico campano, Guide Geologiche Regionali _ 13 itinerari ‐ Campania e Molise. Società Geologica Italiana: Rome; 26–30. Petrosino P, Jicha BR, Mazzeo FC, et al. 2014. A high resolution tephrochronological record of MIS 14–12 in the Southern Apennines (Acerno Basin, Italy). Journal of Volcanology and Geothermal Research 274: 34–50. https://doi.org/10.1016/j.jvolgeores.2014.01.014 Petrosino P, Jicha BR, Mazzeo FC, et al. 2015. The Montalbano Jonico marine succession: an archive for distal tephra layers at the Early–Middle Pleistocene boundary in southern Italy. Quaternary International 383: 89–103. https://doi.org/10.1016/j.quaint.2014.10.049 Petrosino P, Morabito S, Jicha BR, et al. 2016. Multidisciplinary tephrochronological correlation of marker events in the eastern Tyrrhenian Sea between 48 and 105ka. Journal of Volcanology and Geothermal Research 315: 79–99. https://doi.org/10.1016/j.jvolgeores. 2016.02.001 Poli S, Chiesa S, Gillot P‐Y, et al. 1987. Chemistry versus time in the volcanic complex of Ischia (Gulf of Naples, Italy): evidence of successive magmatic cycles. Contributions to Mineralogy and Petrology 95: 322–335. https://doi.org/10.1007/BF00371846 Pyle DM, Ricketts GD, Margari V, et al. 2006. Wide dispersal and deposition of distal tephra during the Pleistocene ‘Campanian Ignimbrite/Y5’eruption, Italy. Quaternary Science Reviews 25: 2713–2728. https://doi.org/10.1016/j.quascirev.2006.06.008 Q9 Rolandi G, Bellucci F, Heizler MT, et al. 2003. Tectonic controls on the genesis of ignimbrites from the Campanian Volcanic Zone, southern Italy. Mineralogy and Petrology 79: 3–31. https://doi.org/ 10.1007/s00710‐003‐0014‐4 Rouchon V, Gillot PY, Quidelleur X, et al. 2008. Temporal evolution of the Roccamonfina volcanic complex (Pleistocene), Central Italy. Journal of Volcanology and Geothermal Research 177: 500–514. https://doi.org/10.1016/j.jvolgeores.2008.07.016 Santacroce R, Cioni R, Marianelli P, et al. 2008. Age and whole rock–glass compositions of proximal pyroclastics from the major explosive eruptions of Somma‐Vesuvius: A review as a tool for distal tephrostratigraphy. Journal of Volcanology and Geothermal Research 177: 1–18. https://doi.org/10.1016/j.jvolgeores.2008. 06.009 Satow C, Tomlinson EL, Grant KM, et al. 2015. A new contribution to the Late Quaternary tephrostratigraphy of the Mediterranean: Aegean Sea core LC21. Quaternary Science Reviews 117: 96–112. https://doi.org/10.1016/j.quascirev.2015.04.005 Scarpati C, Perrotta A, Lepore S, et al. 2013. Eruptive history of Neapolitan volcanoes: constraints from 40Ar–39Ar dating. Geological Magazine 150: 412–425. https://doi.org/10.1017/S0016756812000854 Q10 Schmidt R, vanden Bogaard C, Merkt J, et al. 2002. A new Lateglacial chronostratigraphic tephra marker for the south‐eastern Alps: the Neapolitan Yellow Tuff (NYT) in Längsee (Austria) in the context of a regional biostratigraphy and palaeoclimate. Quaternary Interna- Q11 tional 88: 45–56. https://doi.org/10.1016/S1040‐6182(01)00072‐6 Siani G, Sulpizio R, Paterne M, et al. 2004. Tephrostratigraphy study for the last 18,000 C years in a deep‐sea sediment sequence for the South Adriatic. Quaternary Science Reviews 23: 2485–2500. https:// doi.org/10.1016/j.quascirev.2004.06.004 Smith VC, Isaia R, Pearce NJG. 2011. Tephrostratigraphy and glass compositions of post‐15 kyr Campi Flegrei eruptions: implications for eruption history and chronostratigraphic markers. Quaternary Science Reviews 30: 3638–3660. https://doi.org/ 10.1016/j.quascirev.2011.07.012 Tomlinson EL, Albert PG, Wulf S, et al. 2014. Age and geochemistry of tephra layers from Ischia, Italy: constraints from proximal‐distal correlations with Lago Grande di Monticchio. Journal of Volcanology and Geothermal Research 287: 22–39. https://doi.org/10.1016/ j.jvolgeores.2014.09.006 Tomlinson EL, Arienzo I, Civetta L, et al. 2012. Geochemistry of the Phlegraean Fields (Italy) proximal sources for major Mediterranean tephras: implications for the dispersal of Plinian and co‐ignimbritic components of explosive eruptions. Geochimica et Cosmochimica Acta 93: 102–128. https://doi.org/10. 1016/j.gca.2012.05.043 Tomlinson EL, Smith VC, Albert PG, et al. 2015. The major and trace element glass compositions of the productive Mediterranean volcanic sources: tools for correlating distal tephra layers in and around Europe. Quaternary Science Reviews 118: 48–66. https://doi.org/10. 1016/j.quascirev.2014.10.028 Vogel H, Zanchetta G, Sulpizio R, et al. 2010. A tephrostratigraphic record for the last glacial‐interglacial cycle from Lake Ohrid, Albania and Macedonia. Journal of Quaternary Science 25: 320–338. https://doi.org/10.1002/jqs.1311 Q12 Wagner B, Lotter AF, Nowaczyk N, et al. 2009. A 40,000‐year record of environmental change from ancient Lake Ohrid (Albania and Macedonia. Journal of Paleolimnology 41: 407–430. https://doi.org/ 10.1007/s10933‐008‐9234‐2 Q13 Wulf S, Keller J, Paterne M, et al. 2012. The 100–133 ka record of Italian explosive volcanism and revised tephrochronology of Lago Grande di Monticchio. Quaternary Science Reviews 58: 104–123. https://doi.org/10.1016/j.quascirev.2012.10.020 Wulf S, Kraml M, Brauer A, et al. 2004. Tephrochronology of the 100 ka lacustrine sediment record of Lago Grande di Monticchio (southern Italy). Quaternary International 122: 7–30, https://doi. org/10.1016/j.quaint.2004.01.028 Q14 Zanchetta G, Sulpizio R, Giaccio B, et al. 2008. The Y‐3 tephra: a Last Glacial stratigraphic marker for the central Mediterranean basin. Journal of Volcanology and Geothermal Research 177: 145–154. https://doi.org/10.1016/j.jvolgeores.2007.08.017 Q15 Zanchetta G, Sulpizio R, Roberts N, et al. 2011. Tephrostratigraphy, chronology and climatic events of theMediterranea n basin during the Holocene: an overview. The Holocene 21: 33–52. https://doi. org/10.1177/0959683610377531en_US
dc.description.obiettivoSpecifico1V. Storia eruttivaen_US
dc.description.journalTypeJCR Journalen_US
dc.relation.issn0267-8179en_US
dc.relation.eissn1099-1417en_US
dc.contributor.authorPetrosino, Paola-
dc.contributor.authorArienzo, Ilenia-
dc.contributor.authorMazzeo, Fabio Carmine-
dc.contributor.authorNatale, J-
dc.contributor.authorPetrelli, Maurizio-
dc.contributor.authorMilia, Alfonsa-
dc.contributor.authorPerugini, Diego-
dc.contributor.authorD’Antonio, M.-
dc.contributor.authorPascolis, N-
dc.contributor.departmentDipartimento di Scienze Della Terra, dell’Ambiente e delle Risorse, Università Degli Studi di Napoli Federico II, Napoli, Italyen_US
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italiaen_US
dc.contributor.departmentDipartimento di Scienze Della Terra, dell’Ambiente e delle Risorse, Università Degli Studi di Napoli Federico II, Napoli, Italyen_US
dc.contributor.departmentDipartimento di Scienze Della Terra, dell’Ambiente e delle Risorse, Università Degli Studi di Napoli Federico II, Napoli, Italyen_US
dc.contributor.departmentDipartimenti di Fisica e Geologia, Università di Perugia, Perugia, Italyen_US
dc.contributor.department4CNR, ISMAR Istituto di scienze marine ‐ Calata Porta di Massa Interno Porto di Napoli, Napoli, Italyen_US
dc.contributor.departmentDipartimenti di Fisica e Geologia, Università di Perugia, Perugia, Italyen_US
dc.contributor.departmentDipartimento di Scienze Della Terra, dell’Ambiente e delle Risorse, Università Degli Studi di Napoli Federico II, Napoli, Italyen_US
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptDipartimento di Scienze della Terra e Università degli Studi “Federico II” di Napoli. Largo S. Marcellino 10, 80138 Napoli, Italy-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptDepartment of Physics and Geology, University of Perugia, Piazza dell’Università 1, 06123 Perugia, Italy-
crisitem.author.dept4CNR, ISMAR Istituto di scienze marine ‐ Calata Porta di Massa Interno Porto di Napoli, Napoli, Italy-
crisitem.author.deptUniversità di Napoli "Federico II"-
crisitem.author.orcid0000-0002-5506-8753-
crisitem.author.orcid0000-0002-6213-056X-
crisitem.author.orcid0000-0002-2186-3783-
crisitem.author.orcid0000-0001-6956-4742-
crisitem.author.orcid0000-0002-7962-7281-
crisitem.author.orcid0000-0002-2888-6128-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Petrosino et al., 2019.pdf2.57 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

1
checked on Feb 10, 2021

Page view(s)

394
checked on Apr 27, 2024

Download(s)

3
checked on Apr 27, 2024

Google ScholarTM

Check

Altmetric