Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/12871
DC FieldValueLanguage
dc.date.accessioned2019-11-05T14:26:03Zen
dc.date.available2019-11-05T14:26:03Zen
dc.date.issued2019-07en
dc.identifier.urihttp://hdl.handle.net/2122/12871en
dc.description.abstractWhen a batch of magma reaches Earth's surface, it forms a vent from which volcanic products are erupted. At many volcanoes, successive batches may open vents far away from previous ones, resulting in scattered, sometimes seemingly random spatial distributions. This exposes vast areas to volcanic hazards and makes forecasting difficult. Here, we show that magma pathways and thus future vent locations may be forecast by combining the physics of magma transport with a Monte Carlo inversion scheme for the volcano stress history. We validate our approach on a densely populated active volcanic field, Campi Flegrei (Italy), where we forecast future vents on an onshore semiannular belt located between 2.3 and 4.2 km from the caldera center. Our approach offers a mechanical explanation for the vent migration over time at Campi Flegrei and at many calderas worldwide and may be applicable to volcanoes of any type.en
dc.language.isoEnglishen
dc.relation.ispartofScience advancesen
dc.relation.ispartofseries/5 (2019)en
dc.subjectStress inversionsen
dc.subjectforecast magmaen
dc.subjectvent locationen
dc.titleStress inversions to forecast magma pathways and eruptive vent locationen
dc.typearticleen
dc.description.statusPublisheden
dc.description.pagenumbereaau9784en
dc.subject.INGV04.08. Volcanologyen
dc.identifier.doi10.1126/sciadv.aau9784en
dc.relation.references1. C. G. Newhall, D. Dzurisin, Historical unrest at large calderas of the world. USGS Bull. 1, 326–329 (1988). 2. A. Neri, A. Bevilacqua, T. Esposti Ongaro, R. Isaia, W. P. Aspinall, M. Bisson, F. Flandoli, P. J. Baxter, A. Bertagnini, E. Iannuzzi, S. Orsucci, S. Orsucci, M. Pistolesi, M. Rosi, S. Vitale, Quantifying volcanic hazard at Campi Flegrei caldera (Italy) with uncertainty assessment: 2. Pyroclastic density current invasion maps. J. Geophys. Res. Solid Earth 120, 2330–2349 (2015). 3. G. Wadge, P. A. V. Young, I. J. McKendrick, Mapping lava flow hazards using computer simulation. J. Geophys. Res. 99, 489–504 (1994). 4. C. B. Connor, B. E. Hill, Three nonhomogeneous Poisson models for the probability of basaltic volcanism: Application to the Yucca Mountain region, Nevada. J. Geophys. Res. 100, 10107–10125 (1995). 5. A. Cappello, M. Neri, V. Acocella, G. Gallo, A. Vicari, C. Del Negro, Spatial vent opening probability map for Etna volcano (Sicily, Italy). Bull. Volcanol. 74, 2083–2094 (2012). 6. J. Selva, G. Orsi, M. Di Vito, W. Marzocchi, L. Sandri, Probability hazard map for future vent opening at the Campi Flegrei caldera, Italy. Bull. Volcanol. 74, 497–510 (2012). 7. A. Bevilacqua, R. Isaia, A. Neri, S. Vitale, W. P. Aspinall, M. Bisson, F. Flandoli, P. J. Baxter, A. Bertagnini, T. Esposti Ongaro, E. Iannuzzi, M. Pistolesi, M. Rosi, Quantifying volcanic hazard at Campi Flegrei caldera (Italy) with uncertainty assessment: 1. Vent opening maps. J. Geophys. Res. Solid Earth 120, 2309–2329 (2015). 8. I. Alberico, L. Lirer, P. Petrosino, R. Scandone, A methodology for the evaluation of long-term volcanic risk from pyroclastic flows in Campi Flegrei (Italy). J. Volcanol. Geotherm. Res. 116, 63–78 (2002). 9. A. J. Martin, K. Umeda, C. B. Connor, J. N. Weller, D. Zhao, M. Takahashi, Modeling long-term volcanic hazards through Bayesian inference: An example from the Tohoku volcanic arc, Japan. J. Geophys. Res. Solid Earth 109, B10208 (2004). 10. D. Pollard, Elementary fracture mechanics applied to the structural interpretation of dikes. Geol. Assoc. Can. Spec. Pap. 34, 112–128 (1987). 11. E. M. Anderson, The Dynamics of Faulting and Dyke Formation with Applications to Britain (Oliver and Boyd, ed. 2, 1951). 12. A. Gudmundsson, Infrastructure and mechanics of volcanic systems in Iceland. J. Volcanol. Geotherm. Res. 64, 1–22 (1995). 13. A. Roman, C. Jaupart, The impact of a volcanic edifice on intrusive and eruptive activity. Earth Planet. Sci. Lett. 408, 1–8 (2014). 14. T. Dahm, Numerical simulations of the propagation path and the arrest of fluid-filled fractures in the Earth. Geophys. J. Int. 141, 623–638 (2000). 15. Y. Fialko, On origin of near-axis volcanism and faulting at fast spreading mid-ocean ridges. Earth Planet. Sci. Lett. 190, 31–39 (2001). 16. F. Maccaferri, M. Bonafede, E. Rivalta, A numerical model of dyke propagation in layered elastic media. Geophys. J. Int. 180, 1107–1123 (2010). 17. K. Mosegaard, T. M. Hansen, Inverse methods: Problem formulation and probabilistic solutions, in Integrated Imaging of the Earth: Theory and Applications, M. Moorkamp, P. G. Lelièvre, N. Linde, A. Khan, Eds. (Geophysical Monograph Series, John Wiley and Sons, 2016), vol. 218, pp. 9–27. 18. D. B. Rubin, Using the SIR algorithm to simulate posterior distributions. Bayesian Stat. 3, 395–402 (1988). 19. L. Passarelli, B. Sansò, L. Sandri, W. Marzocchi, Testing forecasts of a new Bayesian time-predictable model of eruption occurrence. J. Volcanol. Geotherm. Res. 198, 57–75 (2010). 20. W. W. Chadwick Jr., J. H. Dieterich, Mechanical modeling of circumferential and radial dike intrusion on Galapagos volcanoes. J. Volcanol. Geotherm. Res. 66, 37–52 (1995). 21. A. Gudmundsson, Magma chambers: Formation, local stresses, excess pressures, and compartments. J. Volcanol. Geotherm. Res. 237–238, 19–41 (2012). 22. V. Pinel, C. Jaupart, The effect of edifice load on magma ascent beneath a volcano. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 358, 1515–1532 (2000). 23. A. Hooper, B. G. Ófeigsson, F. Sigmundsson, B. Lund, P. Einarsson, H. Geirsson, E. Sturkell, Increased capture of magma in the crust promoted by ice-cap retreat in Iceland. Nat. Geosci. 4, 783–786 (2011). 24. F. Corbi, E. Rivalta, V. Pinel, F. Maccaferri, M. Bagnardi, V. Acocella, How caldera collapse shapes the shallow emplacement and transfer of magma in active volcanoes. Earth Planet. Sci. Lett. 431, 287–293 (2015). 25. G. Ventura, G. Vilardo, P. P. Bruno, The role of flank failure in modifying the shallow plumbing system of volcanoes: An example from Somma-Vesuvius, Italy. Geophys. Res. Lett. 26, 3681–3684 (1999). 26. F. Maccaferri, N. Richter, T. Walter, The effect of giant flank collapses on magma pathways and location of volcanic vents. Nat. Commun. 8, 1097 (2017). 27. M. Rosi, A. Sbrana, Phlegrean Fields. CNR, Quad. La Ric. Sci. Roma, Italy. (1987). 28. A. L. Deino, G. Orsi, S. de Vita, M. Piochi, The age of the Neapolitan Yellow Tuff caldera-forming eruption (Campi Flegrei caldera - Italy) assessed by 40Ar/39Ar dating method. J. Volcanol. Geotherm. Res. 133, 157–170 (2004). 29. M. A. Di Vito, R. Isaia, G. Orsi, J. D. Southon, S. De Vita, M. D’Antonio, L. Pappalardo, M. Piochi, Volcanism and deformation since 12,000 years at the Campi Flegrei caldera (Italy). J. Volcanol. Geotherm. Res. 91, 221–246 (1999). 30. G. Orsi, M. A. Di Vito, R. Isaia, Volcanic hazard assessment at the restless Campi Flegrei caldera. Bull. Volcanol. 66, 514–530 (2004). 31. R. Isaia, P. Marianelli, A. Sbrana, Caldera unrest prior to intense volcanism in Campi Flegrei (Italy) at 4.0 ka B.P.: Implications for caldera dynamics and future eruptive scenarios. Geophys. Res. Lett. 36, 1–6 (2009). 32. V. C. Smith, R. Isaia, N. J. G. Pearce, Tephrostratigraphy and glass compositions of post-15 kyr Campi Flegrei eruptions: Implications for eruption history and chronostratigraphic markers. Quat. Sci. Rev. 30, 3638–3660 (2011). 33. L. Steinmann, V. Spiess, M. Sacchi, Post-collapse evolution of a coastal caldera system: Insights from a 3D multichannel seismic survey from the Campi Flegrei caldera (Italy). J. Volcanol. Geotherm. Res. 349, 83–98 (2018). 34. M. A. Di Vito, V. Acocella, G. Aiello, D. Barra, M. Battaglia, A. Carandente, C. Del Gaudio, S. De Vita, G. P. Ricciardi, C. Ricco, R. Scandone, F. Terrasi, Magma transfer at Campi Flegrei caldera (Italy) before the 1538 AD eruption. Sci. Rep. 6, 32245 (2016). 35. L. D’Auria, B. Massa, E. Cristiano, C. Del Gaudio, F. Giudicepietro, G. Ricciardi, C. Ricco, Retrieving the stress field within the Campi Flegrei caldera (Southern Italy) through an integrated geodetical and seismological approach. Pure Appl. Geophys. 172, 3247–3263 (2015). 36. A. Amoruso, L. Crescentini, I. Sabbetta, Paired deformation sources of the Campi Flegrei caldera (Italy) required by recent (1980-2010) deformation history. J. Geophys. Res. Solid Earth 119, 858–879 (2014). 37. A. Amoruso, L. Crescentini, A. T. Linde, I. S. Sacks, R. Scarpa, P. Romano, A horizontal crack in a layered structure satisfies deformation for the 2004–2006 uplift of Campi Flegrei. Geophys. Res. Lett. 34, L22313 (2007).en
dc.description.obiettivoSpecifico6V. Pericolosità vulcanica e contributi alla stima del rischioen
dc.description.journalTypeJCR Journalen
dc.relation.eissn2375-2548en
dc.contributor.authorRivalta, E.en
dc.contributor.authorCorbi, F.en
dc.contributor.authorPassarelli, L.en
dc.contributor.authorAcocella, V.en
dc.contributor.authorDavis, Ten
dc.contributor.authorDi Vito, Mauro Antonioen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptGFZ German Research Center for Geosciences, Potsdam, Germany-
crisitem.author.deptUniversità “Roma TRE”, Dip Scienze, Laboratory of Experimental Tectonics, Rome-
crisitem.author.deptGerman Research Centre for Geosciences-
crisitem.author.deptUniversità Roma Tre, Dipartimento di Scienze Geologiche, Rome, Italy-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.orcid0000-0001-8245-0504-
crisitem.author.orcid0000-0003-2662-3065-
crisitem.author.orcid0000-0002-7913-9149-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
di_rivalta et al 2019 articleeaau9784.full.pdf1.88 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 5

6
checked on Feb 7, 2021

Page view(s)

400
checked on Apr 24, 2024

Download(s)

2
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric