Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/12755
DC FieldValueLanguage
dc.date.accessioned2019-10-10T12:42:40Zen
dc.date.available2019-10-10T12:42:40Zen
dc.date.issued2019en
dc.identifier.urihttp://hdl.handle.net/2122/12755en
dc.description.abstractWe derive a unifying formulation, reliable at all scales, linking Anderson’s faulting theory with the earthquake size-distribution, whose exponent is known as the b-value. Anderson’s theory, introduced in 1905, related fault orientation to stress conditions. Independently, laboratory measurements on acoustic emissions have established that the applied differential stress controls their b-value. Our global survey revealed that observed spatial variations of bare controlled by different stress regimes, generally being lower in compressional (subduction trenches and continental collisional systems) and higher in extensional regimes (oceanic ridges). This confirmed previous observations that the b-value depends on the rake angle of focal mechanisms. Using a new plunge/dip-angles-based b-value analysis, we also identified further systematic influences of faulting geometry: steep normal faults (also typical of the oldest subduction zones) experience the highest proportion of smaller events, while low-angle thrust faults (typical of youngest subduction zones) undergo proportionally larger, more hazardous, events, differently from what would be expected by only allowing for rake-angle dependency. To date, however, no physical model has ever been proposed to explain how earthquakes size-distribution, differential stress and faulting styles relate to each other. Here, we propose and analytically derive a unifying formulation for describing how fault orientation and differential stresses determine b-value. Our formulation confirms that b-values decay linearly with increasing differential stress, but it also predicts a different dip-dependent modulation according to the tectonic environment, opening up new ways of assessing a region’s seismic hazard.en_US
dc.language.isoEnglishen_US
dc.relation.ispartofEarth and Planetary Science Lettersen
dc.relation.ispartofseries/527 (2019)en
dc.subjectstatistical seismology earthquake size-distribution faulting styles Anderson’s theory of faulting Mohr-Coulomb failure criterionen_US
dc.subjectAnderson’s theory of faultingen_US
dc.subjectfaulting stylesen_US
dc.subjectearthquake size-distributionen_US
dc.subjectstatistical seismologyen_US
dc.subjectMohr-Coulomb failure criterionen_US
dc.titleThe influence of faulting style on the size-distribution of global earthquakesen_US
dc.typearticleen_US
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber115791en
dc.subject.INGV04. Solid Earthen_US
dc.identifier.doi10.1016/j.epsl.2019.115791en
dc.relation.referencesAki, K., 1965. Maximum likelihood estimate of bin the formula logN=_a −bMand its confidence limits. Bull. Earthq. Res. Inst. Univ. Tokyo. Amitrano, D., 2003. Brittle-ductile transition and associated seismicity: experimental and numerical studies and relationship with the bvalue. J. Geophys. Res.108, 1–15. https://doi .org /10 .1029 /2001JB000680. Amitrano, D., 2012. Variability in the power-law distributions of rupture events. Eur. Phys. J. Spec. Top.205, 199–215. https://doi .org /10 .1140 /epjst /e2012 -01571 -9. Anderson, E.M., 1905. The dynamics of faulting. Trans. Edinb. Geol. Soc.8, 387–402. https://doi .org /10 .1144 /transed .8 .3 .387. Bird, P., 2003. An updated digital model of plate boundaries. Geochem. Geophys. Geosyst.4. https://doi .org /10 .1029 /2001GC000252. Boettcher, M.S., Jordan, T.H., 2004. Earthquake scaling relations for mid-ocean ridge transform faults. J. Geophys. Res., Solid Earth. https://doi .org /10 .1029 /2004JB003110. Célérier, B., 2010. Remarks on the relationship between the tectonic regime, the rake of the slip vectors, the dip of the nodal planes, and the plunges of the P, B, and T axes of earthquake focal mechanisms. Tectonophysics482, 42–49. https://doi .org /10 .1016 /j .tecto .2009 .03 .006. Collettini, C., Tesei, T., Scuderi, M.M., Carpenter, B.M., Viti, C., 2019. Beyond Byer-lee friction, weak faults and implications for slip behavior. Earth Planet. Sci. Lett.519, 245–263. https://doi .org /10 .1016 /J .EPSL .2019 .05 .011. Copley, A., 2018. The strength of earthquake-generating faults. Q. J. Geol. Soc. Lond. https://doi .org /10 .1144 /jgs2017 -037. Coulomb, C.A., 1776. Essai sur une application des regles des maximis et minimis a quelquels problemesde statique relatifs, a la architecture. Mem. Acad. Roy. Div. Sav.7, 343–387. Dziewonski, A.M., Chou, T.-A., Woodhouse, J.H., 1981. Determination of earth-quake source parameters from waveform data for studies of global and regional seismicity. J. Geophys. Res.86, 2825–2852. https://doi .org /10 .1029 /JB086iB04p02825. Ekström, G., Nettles, M., Dziewo´nski, A.M., 2012. The global CMT project 2004-2010: centroid-moment tensors for 13,017 earthquakes. Phys. Earth Planet. In-ter.200–201, 1–9. https://doi .org /10 .1016 /j .pepi .2012 .04 .002. Frohlich, C., 2001. Display and quantitative assessment of distributions of earthquake focal mechanisms. Geophys. J. Int.144, 300–308. https://doi .org /10 .1046 /j .1365 -246X .2001.00341.x. Frohlich, C., Apperson, K.D., 1992. Earthquake focal mechanisms, moment tensors, and the consistency of seismic activity near plate boundaries. Tectonics11, 279–296. https://doi .org /10 .1029 /91TC02888. Gasperini, P., Vannucci, G., 2003. FPSPACK: a package of FORTRAN subroutines to manage earthquake focal mechanism data. Comput. Geosci.29, 893–901. https://doi .org /10 .1016 /S0098 -3004(03 )00096 -7. Ghosh, A., Newman, A.V., Thomas, A.M., Farmer, G.T., 2008. Interface locking along the subduction megathrust from b-value mapping near Nicoya Peninsula, Costa Rica. Geophys. Res. Lett.35. https://doi .org /10 .1029 /2007GL031617. Goebel, T.H.W., Schorlemmer, D., Becker, T.W., Dresen, G., Sammis, C.G., 2013. Acous-tic emissions document stress changes over many seismic cycles in stick-slip ex-periments. Geophys. Res. Lett.40, 2049–2054. https://doi .org /10 .1002 /grl .50507. Gulia, L., Wiemer, S., 2010. The influence of tectonic regimes on the earthquake size distribution: a case study for Italy. Geophys. Res. Lett.37. https://doi .org /10 .1029 /2010GL043066. Gutenberg, B., Richter, C.F., 1944. Frequency of earthquakes in California. Bull. Seis-mol. Soc. Am.34, 185–188. Hayes, G.P., Wald, D.J., Johnson, R.L., 2012. Slab1.0: a three-dimensional model of global subduction zone geometries. J. Geophys. Res., Solid Earth117. https://doi .org /10 .1029 /2011JB008524. Hubbert, B.M., Rubey, W.W., 1959. Role of fluid pressure in mechanics of overthrust faulting, 1: Mechanics of fluid-filled porous solids and its application to over-thrust faulting. Kagan, Y.Y., 1997. Seismic moment-frequency relation for shallow earthquakes: regional comparison. J. Geophys. Res.102, 2835. https://doi .org /10 .1029 /96JB03386. Kagan, Y.Y., 1999. Universality of the seismic moment-frequency relation. Pure Appl. Geophys.155, 537–573. https://doi .org /10 .1007 /s000240050277. Kagan, Y.Y., 2010. Earthquake size distribution: power-law with exponent β≡1/2? Tectonophysics490, 103–114. https://doi .org /10 .1016 /j .tecto .2010 .04 .034. Mogi, K., 1962. Study of elastic shocks caused by the fracture of heterogeneous ma-terials and its relation to earthquake phenomena. Bull. Earthq. Res. Inst. Univ. Tokyo40, 125–173. Nishikawa, T., Ide, S., 2014. Earthquake size distribution in subduction zones linked to slab buoyancy. Nat. Geosci.7, 904–908. https://doi .org /10 .1038 /ngeo2279. Okal, E.A., Romanowicz, B.A., 1994. On the variation of b-values with earthquake size. Phys. Earth Planet. Inter.87, 55–76. https://doi .org /10 .1016 /0031 -9201(94 )90021 -3. Petruccelli, A., Vannucci, G., Lolli, B., Gasperini, P., 2018. Harmonic fluctuation of the slope of the frequency–magnitude distribution (b-value) as a function of the angle of rake. Bull. Seismol. Soc. Am.108. https://doi .org /10 .1785 /0120170328. Roberts, N.S., Bell, A.F., Main, I.G., 2016. Mode switching in volcanic seismicity: El Hierro 2011-2013. Geophys. Res. Lett.43, 4288–4296. https://doi .org /10 .1002 /2016GL068809. Roberts, N.S., Bell, A.F., Main, I.G., 2015. Are volcanic seismic b-values high, and if so when? J. Volcanol. Geotherm. Res. https://doi .org /10 .1016 /j .jvolgeores .2015 .10 .021. Sammonds, P.R., Meredith, P.G., Main, I.G., 1992. Role of pore fluids in the generation of seismic precursors to shear fracture. Nature359, 228–230. https://doi .org /10 .1038 /359228a0. Samowitz, I.R., Forsyth, D.W., 1981. Double seismic zone beneath the Mariana Is-land Arc. J. Geophys. Res., Solid Earth86, 7013–7021. https://doi .org /10 .1029 /JB086iB08p07013. Scholz, C.H., 1968. The frequency-magnitude relation of microfracturing in rock and its relation to earthquakes. Bull. Seismol. Soc. Am.58, 399–415. Scholz, C.H., 2002. The Mechanics of Earthquakes and Faulting, 2nd edition. Cam-bridge University Press. Scholz, C.H., 2015. On the stress dependence of the earthquake bvalue. Geophys. Res. Lett.42, 1399–1402. https://doi .org /10 .1002 /2014GL062863. Schorlemmer, D., Wiemer, S., 2005. Earth science: microseismicity data forecast rup-ture area. Nature434, 1086. https://doi .org /10 .1038 /4341086a. Schorlemmer, D., Wiemer, S., Wyss, M., 2005. Variations in earthquake-size distri-bution across different stress regimes. Nature437, 539–542. https://doi .org /10 .1038 /nature04094 Schorlemmer, D., Wiemer, S., Wyss, M., 2004. Earthquake statistics at Parkfield, 1: stationarity of bvalues. J. Geophys. Res., Solid Earth109, 1–17. https://doi .org /10 .1029 /2004JB003234. Serpelloni, E., Vannucci, G., Pondrelli, S., Argnani, A., Casula, G., Anzidei, M., Baldi, P., Gasperini, P., 2007. Kinematics of the Western Africa-Eurasia plate boundary from focal mechanisms and GPS data. Geophys. J. Int.169, 1180–1200. https://doi .org /10 .1111 /j .1365 -246X .2007.03367.x. Shi, Y., Bolt, B., 1982. The standarderror of the magnitude-frequency b-value. Bull. Seismol. Soc. Am.72, 1677–1687. Sibson, R.H., 2004. Controls on maximum fluid overpressure defining conditions for mesozonal mineralisation. J. Struct. Geol. https://doi .org /10 .1016 /j .jsg .2003 .11.003. Sibson, R.H., 2014. Earthquake rupturing in fluid-overpressured crust: how com-mon? Pure Appl. Geophys.171, 2867–2885. https://doi .org /10 .1007 /s00024 -014 -0838 -3. Spada, M., Tormann, T., Wiemer, S., Enescu, B., 2013. Generic dependence of the frequency-size distribution of earthquakes on depth and its relation to the strength profile of the crust. Geophys. Res. Lett.40, 709–714. https://doi .org /10 .1029 /2012GL054198. Stein, S., Okal, E.A., 2007. Ultralong period seismic study of the December 2004 Indian Ocean earthquake and implications for regional tectonics and the sub-duction process. Bull. Seismol. Soc. Am.97. https://doi .org /10 .1785 /0120050617. Stern, R.J., Fouch, M.J., Klemperer, S.L., 2003. An overview of the Izu-Bonin-Mariana subduction factory. Insid. Subduction Fact.138, 175–222. https://doi .org /10 .1029 /138GM10. Tormann, T., Enescu, B., Woessner, J., Wiemer, S., 2015. Randomness of megathrust earthquakes implied by rapid stress recovery after the Japan earthquake. Nat. Geosci.8, 152–158. https://doi .org /10 .1038 /ngeo2343. Tormann, T., Wiemer, S., Hardebeck, J.L., 2012. Earthquake recurrence models fail when earthquakes fail to reset the stress field. Geophys. Res. Lett.39. https://doi .org /10 .1029 /2012GL052913. Tormann, T., Wiemer, S., Mignan, A., 2014. Systematic survey of high-resolution bvalue imaging along Californian faults: inference on asperities. J. Geophys. Res., Solid Earth. https://doi .org /10 .1002 /2013JB010867. Townend, J., Zoback, M.D., 2000. How faulting keeps the crust strong. Geology. https://doi .org /10 .1130 /0091 -7613(2000 )028<0399 :HFKTCS >2 .3 .CO ;2. Turcotte, D.L., Schubert, G., 2002. Geodynamics, 2nd edition. Cambridge University Press. Utsu, T., 1966. A statistical significance test of the difference in b-value between two earthquake groups. J. Phys. Earth14, 37–40. https://doi .org /10 .4294 /jpe1952 .14 .37. Uyeda, S., 1982. Subduction zones: an introduction to comparative subductology. Tectonophysics81, 133–159. https://doi .org /10 .1016 /0040 -1951(82 )90126 -3. Uyeda, S., Kanamori, H., 1979. Back-arc opening and the mode of subduction. J. Geo-phys. Res.84, 1049. https://doi .org /10 .1029 /JB084iB03p01049. Wiemer, S., Wyss, M., 2000. Minimum magnitude of completeness in earthquake catalogs: examples from Alaska, the Western United States and Japan. Bull. Seis-mol. Soc. Am.90, 859–869. https://doi .org /10 .1785 /0119990114. Wiemer, S., Wyss, M., 2002. Mapping spatial variability of the frequency-magnitude distribution of earthquakes. Adv. Geophys.45. https://doi .org /10 .1016 /S0065 -2687(02 )80007 -3. Woessner, J., Wiemer, S., 2005. Assessing the quality of earthquake catalogues: es-timating the magnitude of completeness and its uncertainty. Bull. Seismol. Soc. Am.95, 684–698. https://doi .org /10 .1785 /0120040007. Yang, W., Hauksson, E., Shearer, P.M., 2012. Computing a large refined catalog of fo-cal mechanisms for southern California (1981-2010): temporal stability of the style of faulting. Bullen_US
dc.description.obiettivoSpecifico2T. Deformazione crostale attivaen_US
dc.description.journalTypeJCR Journalen
dc.contributor.authorPetruccelli, Antonio-
dc.contributor.authorSchorlemmer, Danijel-
dc.contributor.authorTormann, Thessa-
dc.contributor.authorRinaldi, Antonio Pio-
dc.contributor.authorWiemer, Stefan-
dc.contributor.authorGasperini, Paolo-
dc.contributor.authorVannucci, Gianfranco-
dc.contributor.departmentDipartimento di Fisica e Astronomia, University of Bologna, Italy, Swiss Seismological Service, ETH Zurich, Switzerlanden_US
dc.contributor.departmentSwiss Seismological Service, ETH Zurich, Switzerlanden_US
dc.contributor.departmentSwiss Seismological Service, ETH Zurich, Switzerlanden_US
dc.contributor.departmentSwiss Seismological Service, ETH Zurich, Switzerlanden_US
dc.contributor.departmentSwiss Seismological Service, ETH Zurich, Switzerlanden_US
dc.contributor.departmentDipartimento di Fisica e Astronomia, University of Bologna, Italyen_US
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italiaen_US
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptUniversity of Southern California, Department of Earth Science, Los Angeles-
crisitem.author.deptETH, Zurich,Switzerland-
crisitem.author.deptUniversità di Bologna-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia-
crisitem.author.orcid0000-0003-2240-0358-
crisitem.author.orcid0000-0001-7052-8618-
crisitem.author.orcid0000-0002-5314-0563-
crisitem.author.orcid0000-0003-0918-0784-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
EPSL_115791_proofs.pdf4.5 MBAdobe PDF
Manuscript_AP_2.pdfOpen Access from dec 216.49 MBAdobe PDFView/Open
mmc1.docxsuppl. mat.1.63 MBMicrosoft Word XMLView/Open
Show simple item record

WEB OF SCIENCETM
Citations 20

4
checked on Feb 10, 2021

Page view(s)

162
checked on Apr 27, 2024

Download(s)

213
checked on Apr 27, 2024

Google ScholarTM

Check

Altmetric