Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/12631
DC FieldValueLanguage
dc.date.accessioned2019-04-09T09:27:45Zen
dc.date.available2019-04-09T09:27:45Zen
dc.date.issued2019-03-29en
dc.identifier.urihttp://hdl.handle.net/2122/12631en
dc.description.abstractUltramafic magmas (MgO 18 wt%) are generally thought to be primary mantle melts formed at temperatures in excess of 1600 C. Volatile contents are expected to be low, and accordingly, high-Mg magmas generally do not yield large explosive eruptions. However, there are important exceptions to low explosivity that require an explanation. Here we show that hydrous (hence, potentially explosive) ultramafic magmas can also form at crustal depths at temperatures even lower than 1000 C. Such a conclusion arose from the study of a silicate glass vein, ~1 mm in thickness, cross-cutting a mantle-derived harzburgite xenolith from the Valle Guffari nephelinite diatreme (Hyblean area, Sicily). The glass vein postdates a number of serpentine veins already existing in the host harzburgite, thus reasonably excluding that the melt infiltrated in the rock at mantle depths. The glass is highly porous at the sub-micron scale, it also bears vesicles filled by secondary minerals. The distribution of some major elements corresponds to a meimechite composition (MgO = 20.35 wt%; Na2O + K2O < 1 wt%; and TiO2 > 1 wt%). On the other hand, trace element distribution in the vein glass nearly matches the nephelinite juvenile clasts in the xenolith-bearing tuff-breccia. These data strongly support the hypothesis that an upwelling nephelinite melt (MgO = 7–9 wt%; 1100 T 1250 C) intersected fractured serpentinites (T 500 C) buried in the aged oceanic crust. The consequent dehydroxilization of the serpentine minerals gave rise to a supercritical aqueous fluid, bearing finely dispersed, hydrated cationic complexes such as [Mg2+(H2O)n]. The high-Mg, hydrothermal solution "flushed" into the nephelinite magma producing an ultramafic, hydrous (hence, potentially explosive), hybrid magma. This hypothesis explains the volcanological paradox of large explosive eruptions produced by ultramafic magmas.en
dc.language.isoEnglishen
dc.relation.ispartofGeosciencesen
dc.relation.ispartofseries/ 9 (2019)en
dc.subjectPeridotiteen
dc.subjectsilicate glassen
dc.subjectserpentiniteen
dc.subjectmeimechiteen
dc.subjectpicriteen
dc.subjectexplosive eruptionen
dc.titleA Volcanological Paradox in a Thin-Section: Large Explosive Eruptions of High-Mg Magmas Explained Through a Vein of Silicate Glass in a Serpentinized Peridotite Xenolith (Hyblean Area, Sicily)en
dc.typearticleen
dc.description.statusPublisheden
dc.description.pagenumberid 150en
dc.subject.INGV04.08. Volcanologyen
dc.identifier.doi10.3390/geosciences9040150en
dc.relation.references1. Newhall, C.; Self, S. The Volcanic Explosivity Index (VEI): An Estimate of Explosive Magnitude for Historical Volcanism. J. Geophys. Res. 1982, 87, 1231–1238. [CrossRef] 2. Giordano, D.; Russel, J.K.; Dingwell, D.B. Viscosity of magmatic liquids: A model. Earth. Planet. Sci. Lett. 2008, 271, 123–134. [CrossRef] 3. Schmincke, H.-U. Volcanism; Springer: Berlin, Germany, 1998; p. 324, ISBN 3-540-43650-2. 4. Coltelli, M.; Del Carlo, P.; Vezzoli, L. Stratigraphic constraints for explosive activity in the past 100 ka at Etna Volcano, Italy. Int. J. Earth. Sci. 2000, 89, 65–677. [CrossRef] 5. Del Carlo, P.; Pompilio, M. The relationship between volatile content and the eruptive style of basaltic magma: The Etna case. Ann. Geophys. 2004, 47, 1423–1432. 6. Kamenetsky, V.S.; Pompilio, M.; Métrich, N.; Sobolev, A.V.; Kuzmin, D.V.; Thomas, R. Arrival of extremely volatile-rich high-Mg magmas changes explosivity of Mount Etna. Geology 2007, 35, 255–258. [CrossRef] 7. Swanson, D.A.; Rose, T.R.; Mucek, A.E.; Garcia, M.O.; Fiske, R.S.; Mastin, L.G. Cycles of explosive and effusive eruptions at Kìlauea Volcano Hawai’i. Geology 2014, 7, 631–634. [CrossRefAmore, C.; Giuffrida, E.; Scribano, V.; Lowenstern, J.B.; Müller, W. Emplacement and textural analysis of some present-daypyroclastic deposits of Mt Etna, Sicily. Boll. Soc. Geol. Ital. 1987, 106, 785–791. 9. Coltelli, M.; Del Carlo, P.; Pompilio, M.; Vezzoli, L. Explosive eruption of a picrite: The 3930 BP subplinian eruption of Etna volcano, Italy. Geophys. Res. Lett. 2005, 32, L23307. [CrossRef] 10. Patterson, M.; Francis, D.; McCandless, T. Kimberlites: Magmas or mixtures? Lithos 2009, 112, 191–200. [CrossRef] 11. White, J.; Ross, P.-S. Maar-diatreme volcanoes: A review. J. Volcanol. Geotherm. Res. 2011, 201, 1–29. [CrossRef] 12. Graettinger, A.H.; Valentine, G.A.; Sonder, I.; Ross, P.-S.; White, J.D.L.; Taddeucci, J. Maar-diatreme geometry and deposits: Subsurface blast experiments with variable explosion depth. Geochem. Geophys. Geosyst. 2014, 15, 740–764. [CrossRef] 13. Anderson, A.T. CO2 and the eruptibility of picrite and komatiite. Lithos 1995, 34, 19–25. [CrossRef] 14. Saal, A.E.; Hauri, E.H.; Langmuir, C.H.; Perfit, M.R. Vapor undersaturation in primitive mid-ocean ridge basalts and the volatile content of Earth’s upper mantle. Nature 2002, 419, 451–455. [CrossRef] [PubMed] 15. Hauri, E.H.; Gaetani, G.A.; Green, T.H. Partitioning of water during melting of the Earth’s upper mantle at H2O-undersaturated conditions. Earth Planet. Sci. Lett. 2000, 248, 715–734. [CrossRef] 16. Scribano, V.; Carbone, S.; Manuella, F.C. Diatreme eruption probably related to explosive interaction of rising magma with serpentinite diapirs in the shallow crust (Carlentini Formation Hyblean area Sicily): A xenolith perspective. Epitome 2007, 2, 130–131. 17. Manuella, F.C.; Carbone, S.; Ferlito, C.; Hovland, M. Magma–serpentinite interaction as the origin of diatremes: A case study from the Hyblean Plateau (southeastern Sicily). Int. J. Earth Sci. 2016, 105, 1371–1385. [CrossRef] 18. Viccaro, M.; Scribano, V.; Cristofolini, R.; Ottolini, L.; Manuella, F.C. Primary origin of some trachytoid magmas: Inferences from naturally quenched glasses in hydrothermally metasomatized gabbroic xenoliths (Hyblean area Sicily). Lithos 2009, 113, 659–672. [CrossRef] 19. Herzberg, C. Depth and degree of melting of komatiite. J. Geophys. Res. 1992, 97, 4521–4540. [CrossRef] 20. Herzberg, C.; O’Hara, M.J. Plume-associated ultramafic magmas of Phanerozoic age. J. Petrol. 2002, 43, 1857–1883. [CrossRef] 21. Gudfinnsson, G.H.; Presnall, D.C. Continuous gradations among primary carbonatitic kimberlitic melilitic basaltic picritic and komatiitic melts in equilibrium with garnet lherzolite at 3–8 GPa. J. Petrol. 2005, 46, 1645–1659. [CrossRef] 22. Elkins-Tanton, L.T.; Draper, D.S.; Agee, C.B.; Jewell, J.; Thorpe, A.; Hess, P.C. The last lavas erupted during the main phase of the Siberian flood volcanic province: Results from experimental petrology. Contrib. Mineral. Petrol. 2007, 153, 191–209. [CrossRef] 23. Herzberg, C.; Asimov, P.D.; Arndt, N.; Niu, Y.L.; Lesher, C.M.; Fitton, J.G.; Cheadle, M.J.; Saunders, A.D. Temperatures in ambient mantle and plumes: Constraints from basalts picrites and komatiites. Geochem. Geophys. Geosys. 2007, 8, Q02006. [CrossRef] 24. Lentini, F.; Carbone, S.; Catalano, S. Main structural domains of the central Mediterranean region and their Neogene tectonic evolution. Boll. Geofis. Teor. Appl. 1994, 36, 141–144. 25. Rocchi, S.; Longaretti, G.; Salvadori, M. Subsurface Mesozoic and Cenozoic magmatism in southeastern Sicily: Distribution volume and geochemistry of magmas. Acta Vulcanol. 1998, 10, 395–408. 26. De Rosa, R.; Mazzuoli, R.; Scribano, V.; Trua, T. Nuovi dati petrologici sulle Vulcaniti dei Monti Iblei (Sicilia sud-orientale): Implicazioni genetiche e geotettoniche. Miner. Petrogr. Acta 1991, 34, 133–151. 27. Tonarini, S.; D’Orazio, M.; Armenti, P.; Innocenti, F.; Scribano, V. Geochemical features of Eastern Sicily lithosphere as probed by Hyblean xenoliths and lavas. Eur. J. Mineral. 1996, 8, 1153–1173. [CrossRef] 28. Schmincke, H.U.; Behncke, B.; Grasso, M.; Raffi, S. Evolution of the northwestern Iblean Mountains Sicily: Uplift Plicocene/ Pleistocene sea–level changes paleoenvironment and volcanism. Geol. Rundsch. 1997, 86, 637–669. [CrossRef] 29. Beccaluva, L.; Siena, F.; Coltorti, M.; Digrande, A.; Lo Giudice, A.; Macciotta, G.; Tassinari, R.; Vaccaro, C. Nephelinitic to tholeiitic magma generation in a transtensional tectonic setting: An integrated model for the Iblean vulcanism, Sicily. J. Petrol. 1998, 39, 1547–1576. [CrossRef]30. Trua, T.; Esperança, S.; Mazzuoli, R. The evolution of the lithospheric mantle along the N African Plate: Geochemical and isotopical evidence from the tholeiitic and alkaline volcanic rocks of the Hyblean Plateau Italy. Contrib. Mineral. Petrol. 1998, 131, 307–322. [CrossRef] 31. Correale, A.; Martelli, M.; Paonita, A.; Scribano, V.; Arienzo, I. A combined study of noble gases trace elements and Sr–Nd isotopes for alkaline and tholeiitic lava from the Hyblean Plateau (Italy). Lithos 2018, 314–315, 59–70. [CrossRef] 32. Suiting, I.; Schmincke, H.U. Internal vs external forcing in shallow marine diatreme formation: A case study from the Iblean Mountains (SE-Sicily Central Mediterranean). J. Volcanol. Geotherm. Res. 2009, 186, 361–378. [CrossRef] 33. Scribano, V.; Sapienza, G.T.; Braga, R.; Morten, L. Gabbroic xenoliths in tuff-breccia pipes from the Hyblean Plateau: Insights into the nature and composition of the lower crust underneath Southeastern Sicily, Italy. Mineral. Petrol. 2006, 86, 63–88. [CrossRef] 34. Scribano, V.; Ioppolo, S.; Censi, P. Chlorite/smectite-alkali feldspar metasomatic xenoliths from Hyblean Miocenic diatremes (Sicily, Italy): Evidence for early interaction between hydrothermal brines and ultramafic magmatic rocks at crustal levels. Ofioliti 2006, 31, 161–171. 35. Manuella, F.C.; Scribano, V.; Carbone, S.; Brancato, A. The Hyblean xenolith suite (Sicily): An unexpected legacy of the Ionian–Tethys realm. Int. J. Earth Sci. 2015, 104, 1317–1336. [CrossRef] 36. Beccaluva, L.; Bianchini, G.; Coltorti, M.; Natali, C. Comment on Manuella et al “The Hyblean xenolith suite (Sicily): An unexpected legacy of the Ionian–Tethys realm”. Int. J. Earth Sci. 2015, 104, 1679–1684. [CrossRef] 37. Manuella, F.C.; Scribano, V.; Carbone, S.; Brancato, A. Reply to “Comment on Manuella et al ‘The Hyblean xenolith suite (Sicily): An unexpected legacy of the Ionian–Tethys realm’ by Beccaluva et al 2015”. Int. J. Earth Sci. 2015, 104, 1685–1691. [CrossRef] 38. Ben Avraham, Z.; Boccaletti, M.; Cello, G.; Grasso, M.; Lentini, F.; Torelli, L.; Tortorici, L. Principali domini strutturali originatisi dalla collisione neogenico–quaternaria nel Mediterraneo centrale. Mem. Soc. Geol. Ital. 1990, 45, 453–462. 39. Finetti, I.; Lentini, F.; Carbone, S.; Del Ben, A.; Di Stefano, A.; Forlin, E.; Guarnieri, P.; Pipan, M.; Prizzon, A. Geological outline of Sicily and lithospheric tectono-dynamics of its Tyrrhenian margin from new CROP seismic data. In CROP Project: Seismic Exploration of the Central Mediterranean and Italy; Finetti, I.R., Ed.; Elsevier: Amsterdam, The Netherlands, 2005; Volume 15, pp. 319–376. 40. Dellong, D.; Klingelhoefer, F.; Kopp, H.; Graindorge, D.; Margheriti, L.; Gutscher, M.A. Crustal Structure of the Ionian Basin and Eastern Sicily Margin: Results from a Wide-Angle Seismic Survey. J. Geophys. Res. Solid Earth 2018, 123, 2090–2114. [CrossRef] 41. Hyndman, R.D.; Peacock, S.M. Serpentinization of the forearc mantle. Earth Planet. Sci. Lett. 2003, 212, 417–432. [CrossRef] 42. Giampiccolo, E.; Brancato, A.; Manuella, F.C.; Carbone, S.; Gresta, S.; Scribano, V. New evidence for the serpentinization of the Palaeozoic basement of southeastern Sicily from joint 3-D seismic velocity and attenuation tomography. Geophys. J. Int. 2017, 211, 1375–1395. [CrossRef] 43. Musumeci, C.; Scarfì, L.; Palano, M.; Patanè, D. Foreland segmentation along an active convergent margin: New constraints in southeastern Sicily (Italy) from seismic and geodetic observations. Tectonophysics 2014, 630, 137–149. [CrossRef] 44. Burollet, F.P. Structures and tectonics of Tunisia. Tectonophysics 1991, 195, 359–369. [CrossRef] 45. Thibault, N.; Galbrun, B.; Gardin, S.; Minoletti, F.; Le Callonnec, L. The end-Cretaceous in the southwestern Tethys (Elles Tunisia): Orbital calibration of paleoenvironmental events before the mass extinction. Int. J. Earth Sci. 2016, 105, 771–795. [CrossRef] 46. Manuella, F.C.; Brancato, A.; Carbone, S.; Gresta, S. A crustal- upper mantle model for southeastern Sicily (Italy) from the integration of petrologic and geophysical data. J. Geodyn. 2013, 66, 92–102. [CrossRef] 47. D’Alessandro, A.; Mangano, G.; D’Anna, G.; Scudero, S. Evidence for serpentinization of the Ionian upper mantle from simultaneous inversion of P- and S-wave arrival times. J. Geodyn. 2016, 102, 115–120. [CrossRef] 48. Polonia, A.; Torelli, L.; Gasperini, L.; Cocchi, L.; Muccini, F.; Bonatti, E.; Hensen, C.; Schmidt, M.; Romano, S.; Artoni, A.; et al. Lower plate serpentinite diapirism in the Calabrian Arc subduction complex. Nat. Commun. 2017, 8, 2172. [CrossRef] [PubMed]49. De Guidi, G.; Imposa, S.; Scudero, S.; Palano, M. New evidence for Late Quaternary deformation of the substratum of Mt Etna volcano (Sicily Italy): Clues indicate active crustal doming. Bull. Volcanol. 2014, 76, 816–829. [CrossRef] 50. Manuella, F.C.; Ottolini, L.; Carbone, S.; Scavo, L. Metasomatizing effects of serpentinization-related hydrothermal fluids in abyssal peridotites: New contributions from Hyblean peridotite xenoliths (southeastern Sicily). Lithos 2016, 264, 405–421. [CrossRef] 51. Manuella, F.C.; Della Ventura, G.; Galdenzi, F.; Carbone, S. Sr-rich aragonite veins in Hyblean serpentinized peridotite xenoliths (Sicily, Italy): Evidence for abyssal-type carbonate metasomatism. Lithos 2019, 326–327, 200–212. [CrossRef] 52. Scribano, V. Natural partial melting of pyroxenite nodules and megacrysts from Sicily: A preliminary report. Period Miner. 1988, 57, 65–72. 53. Scribano, V.; Viccaro, M.; Cristofolini, R.; Ottolini, L. Metasomatic events recorded in ultramafic xenoliths from the Hyblean area (Southeastern Sicily Italy). Mineral. Petrol. 2009, 95, 235–250. [CrossRef] 54. Perinelli, C.; Sapienza, G.T.; Armienti, P.; Morten, L. Metasomatism of the upper mantle beneath the Hyblean Plateau (Sicily): Evidence from pyroxenes and glass in peridotite xenoliths. Geol. Soc. 2008, 293, 197–221. [CrossRef] 55. Frost, R.B.; Beard, J.S. On silica activity and serpentinization. J. Petrol. 2007, 48, 1351–1368. [CrossRef] 56. Evans, B.W. The serpentinite multisystem revisited: Chrysotile is metastable. Int. Geol. Rev. 2004, 46, 479–506. [CrossRef] 57. Palandri, J.L.; Reed, M.H. Geochemical models of metasomatism in ultramafic systems: Serpentinization rodingitization and sea floor carbonate chimney precipitation. Geochim. Cosmochim. Acta 2004, 68, 1115–1133. [CrossRef] 58. Blackman, D.K.; Karson, J.A.; Kelley, D.S.; Cann, J.R.; Früh-Green, G.L.; Gee, J.S.; Hurst, S.D.; John, B.E.; Morgan, J.; Nooner, S.L.; et al. Geology of the Atlantis Massif (Mid-Atlantic Ridge 30 N): Implications for the evolution of an ultramafic oceanic core complex. Mar. Geophys. Res. 2004, 23, 443–469. [CrossRef] 59. Silantyev, S.A.; Bortnikov, N.S.; Shatagin, K.N.; Bel’tenev, V.E.; Kononkova, N.N.; Bychkova, Y.V.; Krasnova, E.A. Petrogenetic conditions at at 18 –20 N MAR: Interaction between hydrothermal and magmatic systems. Petrology 2016, 24, 336–366. [CrossRef] 60. Le Bas, M.J. IUGS reclassification of the high-Mg and picritic volcanic rocks. J. Petrol. 2000, 41, 1467–1470. [CrossRef] 61. Kerr, A.C.; Arndt, N.T. A note on the IUGS reclassification of the high-Mg and picritic volcanic rocks. J. Petrol. 2001, 42, 2169–2171. [CrossRef] 62. Vasil’ev, Yu.R.; Gora, M.P. Meimechite–picrite associations in Siberia, Primorye, and Kamchatka (comparative analysis and petrogenesis). Russ. Geol. Geophys. 2014, 55, 959–970. [CrossRef] 63. Clague, D.A.;Weber, W.S.; Dixon, J.E. Picritic glasses from Hawaii. Nature 1991, 353, 553–555. [CrossRef] 64. Winchester, J.A.; Floyd, P.A. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chem. Geol. 1977, 20, 325–343. [CrossRef] 65. Pearce, J.A. Geochemical fingerprint of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos 2008, 100, 14–48. [CrossRef] 66. Fitton, J. The OIB paradox. Geol. Soc. Am. 2007, 430, 387–412. [CrossRef] 67. Arndt, N.; Lehnert, K.; Vasil’ev, Y. Meimechites: Highly magnesian lithosphere-contaminated alkaline magmas from deep subcontinental mantle. Lithos 1995, 34, 41–59. [CrossRef] 68. Heinonen, J.S.; Luttinen, A.V. Jurassic dikes of Vestfjella, western Dronning Maud Land, Antarctica: Geochemical tracing of ferropicrite sources. Lithos 2008, 105, 347–364. [CrossRef] 69. Clague, D.A.; Moore, J.G.; Dixon, J.E.; Friesen, W.B. Petrology of submarine lavas from Kilauea’ Puna Ridge, Hawaii. J. Petrol. 1995, 36, 299–349. [CrossRef] 70. Natland, J.H. Capture of mantle helium by growing olivine phenocrysts in picritic basalts from the Juan Fernandez Islands, SE Pacific. J. Petrol. 2003, 44, 421–456. [CrossRef] 71. Kogarko, L.N.; Ryabchikov, I.D. Geochemical evidence for meimechite magma generation in the subcontinental lithosphere of Polar Siberia. J. Asian Earth Sci. 2000, 18, 195–203. [CrossRef] 72. Milidragovic, D.; Chapman, J.B.; Bichlmaier, S.; Canil, D.; Zagorevskic, A. H2O-driven generation of picritic melts in the Middle to Late Triassic Stuhini arc of the Stikine terrane, British Columbia, Canada. Earth Planet. Sci. Lett. 2016, 454, 65–77. [CrossRef]73. Sobolev, A.V.; Sobolev, S.V.; Kuzmin, D.V.; Malitch, K.N.; Petrunin, A.G. Siberian meimechites: Origin and relation to flood basalts and kimberlites. Russ. Geol. Geophys. 2009, 50, 999–1033. [CrossRef] 74. Gale, A.; Dalton, C.A.; Langmuir, C.H.; Su, Y.; Schilling, J.G. The mean composition of ocean ridge basalts. Geochem. Geophys. Geosyst. 2013, 14, 489–518. [CrossRef] 75. Alt, J.C.; Shanks, W.C. Serpentinization of abyssal peridotites from the MARK area Mid-Atlantic Ridge: Sulfur geochemistry and reaction modeling. Geochim. Cosmochim. Acta 2003, 67, 641–653. [CrossRef] 76. Frost, R.B. On the stability of sulphides oxides and native metals in serpentinite. J. Petrol. 1985, 26, 31–63. [CrossRef] 77. Yoder, H.S., Jr.; Tilley, C. Origin of basalt magmas: Experimental study of natural and synthetic rock systems. J. Petrol. 1962, 3, 342–532. [CrossRef] 78. Wright, T.L.; Okamura, R.T. Cooling and Crystallization of Tholeiitic Basalt, 1965 Makaopuhi Lava Lake, Hawaii; Geological Survey Professional Paper 1004; United States Government Printing Office: Washington, DC, USA, 1977; pp. 1–47. 79. Rudge, J.F.; Kelemen, P.B.; Spiegelman, M. A simple model of reaction induced cracking applied to serpentinization, carbonation of peridotite. Earth Planet. Sci. Lett. 2010, 291, 215–227. [CrossRef] 80. Wohletz, K.; Zimanowski, B.; BuÃàttner, R. Magma–water interactions. In Modeling Volcanic Processes: The Physics and Mathematics of Volcanism; Sarah, A., Fagents, S.A., Gregg, T.K.P., Lopes, R.M.C., Eds.; Cambridge University Press: Cambridge, UK, 2012; pp. 231–257. 81. Viti, C. Serpentine minerals discrimination by thermal analysis. Am. Mineral. 2010, 95, 631–638. [CrossRef] 82. Seipold, U.; Schilling, F.R. Heat transport in serpentinites. Tectonophysics 2003, 370, 147–162. [CrossRef] 83. Peltonen, P. Metamorphic olivine in picritic metavolcanics from Southern Finland. Bull. Geol. Soc. Finl. 1990, 62, 99–114. [CrossRef] 84. Gualtieri, A.F.; Giacobbe, C.; Viti, C. The dehydroxylation of serpentine group minerals. Am. Mineral. 2012, 97, 666–680. [CrossRef] 85. Dunbar, R.C.; Petrie, S. Magnesium Monocationic Complexes: A Theoretical Study of Metal Ion Binding Energies and Gas-Phase Association Kinetics. J. Phys. Chem. 2005, 109, 1411–1419. [CrossRef] [PubMed] 86. Rodriguez-Cruz, S.E.; Jockusch, R.A.; Williams, E.R. Hydration energies and structures of alkaline earth metal ions, M2+(H2O)n, n = 5–7, M = Mg, Ca, Sr, and Ba. J. Am. Chem. Soc. 1999, 121, 8898–8906. [CrossRef] 87. Mysen, B.O.; Boettcher, A.L. Melting of a hydrous mantle. I. Phase relations of natural peridotite at high pressures and temperatures with controlled activities of water, carbon dioxide and hydrogen. J. Petrol. 1975, 33, 347–375. [CrossRef] 88. Ferlito, C.; Coltorti,M.; Lanzafame, G.; Giacomoni, P. The volatile flushing triggers eruptions at open conduit volcanoes: Evidence from Mount Etna volcano (Italy). Lithos 2014, 184, 447–455. [CrossRef] 89. Zimanowski, B.; Böttner, R. Dynamic mingling of magma and liquefied sediments. J. Volcanol. Geotherm. Res. 2002, 114, 37–44. [CrossRef] 90. De Rosa, R.; Donato, P.; Ventura, G. Fractal analysis of mingled/mixed magmas: An example from the Upper Pollara eruption (Salina Island southern Tyrrhenian Sea Italy). Lithos 2002, 65, 299–311. [CrossRef] 91. Morgavi, D.; Perugini, D.; De Campos, C.; Ertel-Ingrisch, W.; Dingwell, D. Time evolution of chemical exchanges during mixing of rhyolitic and basaltic melts. Contrib. Mineral. Petrol. 2013, 166, 615–638. [CrossRef] 92. Perugini, D.D.; Campos, C.P.; Petrelli, M.; Morgavi, D.; Vetere, F.P.; Dingwel, D.B. Quantifying magma mixing with the Shannon entropy: Application to simulations and experiments. Lithos 2015, 236, 299–310. [CrossRef] 93. Correale, A.; Paonita, A.; Martelli, M.; Rizzo, A.; Rotolo, S.G.; Corsaro, R.A.; Di Renzo, V. A two component mantle source feeding Mt Etna magmatism: Insights from the geochemistry of primitive magmas. Lithos 2014, 184, 243–258. [CrossRef] 94. Arndt, N.T.; Nisbet, E.G. What is a komatiite? In Komatiites; Arndt, N.T., Nisbet, E.G., Eds.; Allen & Unwin: London, UK, 1989; pp. 19–28. 95. Agee, C.B.;Walker, D. Static compression and olivine flotation in ultrabasic silicate liquid. J. Geophys. Res. 1988, 93, 3437–3449. [CrossRef] 96. Cox, K.G. A model for flood basalt volcanism. J. Petrol. 1980, 21, 629–650. [CrossRef]97. Falloon, T.J.; Green, D.H.; Danushevsky, L. Crystallization temperatures of tholeiite parental liquids: Implications for the existence of thermally driven mantle plumes. In Plates Plumes and Planetary Processes; Foulger, G.R., Jurdy, D.M., Eds.; Geological Society of America: Boulder, CO, USA; pp. 235–260. 98. Hammouda, T.; Laporte, D. Ultrafast mantle impregnation by carbonatite melts. Geology 2000, 28, 283–285. [CrossRef] 99. Nixon, P.H. Mantle Xenoliths; JohnWilley & Sons: London, UK, 1987; p. 640. 100. Punturo, R.; Scribano, S. Dati geochimici e petrografici su xenoliti di clinopirossenite a grana ultragrossa e websteriti nelle vulcanoclastiti mioceniche dell’alta Valle Guffari (Monti Iblei, Sicilia). Miner. Petrogr. Acta 1997, 40, 95–116. 101. Thorpe, A.K. Evidence from Experimental Petrology for Olivine Addition in Meimechite Magma Generation. Ph.D. Thesis, Department of Geological Sciences, Brown University, Providence, RI, USA, 2004. Available online: http://www.geog.ucsb.edu/~{}akthorpe/documents/Andrew_K_Thorpe_Honors_ Thesis.pdf (accessed on 6 June 2018). 102. Boudier, F.; Nicolas, A.; Ildefonse, B. Magma chambers in the Oman Ophiolite: Fed from the top and the bottom. Earth Planet. Sci. Lett. 1996, 144, 239–250. [CrossRef] 103. Scribano, V.; Carbone, S.; Manuella, F.C. Tracking the Serpentinite Feet of the Mediterranean Salt Giant. Geosciences 2018, 8, 352. [CrossRef]en
dc.description.obiettivoSpecifico4V. Processi pre-eruttivien
dc.description.journalTypeJCR Journalen
dc.contributor.authorCorreale, Alessandraen
dc.contributor.authorScribano, Vittorioen
dc.contributor.authorPaonita, Antonioen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Palermo, Palermo, Italiaen
dc.contributor.departmentDipartimento di Scienze Biologiche, Geologiche e Ambientali, Università di Cataniaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Palermo, Palermo, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Palermo, Palermo, Italia-
crisitem.author.deptDipartimento di Scienze Biologiche, Geologiche e Ambientali, Università di Catania-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Palermo, Palermo, Italia-
crisitem.author.orcid0000-0001-6567-6026-
crisitem.author.orcid0000-0001-9124-5027-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat
Correale et al., 2019 geosciences.pdf5.22 MBAdobe PDFView/Open
Show simple item record

WEB OF SCIENCETM
Citations 50

1
checked on Feb 10, 2021

Page view(s)

330
checked on Apr 24, 2024

Download(s)

24
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric