Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/12503
DC FieldValueLanguage
dc.date.accessioned2019-03-29T08:41:11Zen
dc.date.available2019-03-29T08:41:11Zen
dc.date.issued2018en
dc.identifier.urihttp://hdl.handle.net/2122/12503en
dc.description.abstractAt present, the urban population has to cope with the effects caused from Urban Heat Island (UHI), poor air quality and increased frequency and/or intensity of extreme weather and climate events. The expected increase of these extremes in areas of the planet and the way to adapt to them has emphasized the need to investigate in detail the climate of the cities. Local vulnerability and risk assessments, supported by using regional climate models at very high resolution, are key to support development and implementation of effective local adaptation measures to make well-adapted and climate-resilient cities, i.e. more sustainable ones. This study aims to provide some quantitative information on the effectiveness of main local adaptation measures to reduce the magnitude of UHI, in terms of temperature and energy fluxes. The investigation was conducted by adopting the TEB 1D model for the Toulouse city case-study. Different urban configurations and adaptation measures have been considered in the model set up. The results confirm that different adaptation measures may reduce the temperature on the town elements during the daylight hours; among the different measures, the green roof prevent the radiative cooling, increasing the roof night temperature and contributing to the night UHI.en
dc.language.isoEnglishen
dc.publisher.nameElsevieren
dc.relation.ispartofSustainable Cities and Societyen
dc.relation.ispartofseries/39 (2018)en
dc.subjectUrban Heat Islanden
dc.subjectAdaptation measuresen
dc.titleParametric investigation of Urban Heat Island dynamics through TEB 1D model for a case study: Assessment of adaptation measuresen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber662-673en
dc.identifier.doi10.1016/j.scs.2018.03.023en
dc.relation.referencesArnfield, A. J. (2003). Two decades of urban climate research: A review of turbulence, exchanges of energy and water, and the urban heat island. International Journal of Climatology, 23, 1–26. http://dx.doi.org/10.1002/joc.859. Ashie, Y., & Kono, T. (2011). Urban-scale CFD analysis in support of a climate-sensitive design for the Tokyo bay area. International Journal of Climatology, 31, 174–188. http://dx.doi.org/10.1002/joc.2226. Bueno, B., Pigeon, G., Norford, L. K., Zibouche, K., & Marchadier, C. (2012). Development and evaluation of a building energy model integrated in the TEB scheme. Geoscientific Model Development, 5, 433–448. http://dx.doi.org/10.5194/gmd-5-433-2012. Busato, F., Lazzarin, R. M., & Noro, M. (2014). Three years of study of the Urban Heat Island in Padua: Experimental results. Sustainable Cities and Society, 10, 251–258. http://dx.doi.org/10.1016/j.scs.2013.05.001. Conry, P., Sharma, A., Potosnak, M. J., Leo, L. S., Bensman, E., Hellmann, J. J., et al. (2015). Chicago’s heat island and climate change: bridging the scales via dynamical downscaling. Journal of Applied Meteorology and Climatology, 54(7), 1430–1448. http://dx.doi.org/10.1175/JAMC-D-14-0241.1. Demuzere, M., Orru, K., Heidrich, O., Olazabal, E., Geneletti, D., Orru, H., et al. (2014). Mitigating and adapting to climate change: Multi-functional and multi-scale assessment of green urban infrastructure. Journal of Environmental Management, 146, 107–115. http://dx.doi.org/10.1016/j.jenvman.2014.07.025. de Munck, C. (2013). Modélisation de la végétation urbaine et des stratégies d’adaptation au changement climatique pour l’amélioration du confort climatique et de la demande énergétique en ville (Modelling of urban vegetation and adaptation strategies for improved comfort and energy demand in the city) PhD Thesis. Toulouse, France: Paul Sabatier University. Djukic, A., Vukmirovic, M., & Stankovic, S. (2015). Principles of climate sensitive urban design analysis in identification of suitable urban design proposals. case study: Central zone of Leskovac competition. Energy and Buildings, 115, 23–35. http://dx. doi.org/10.1016/j.enbuild.2015.03.057. EC & UN-Habitat (2016). The State of European Cities 2016 Cities leading the way to a better futurehttp://ec.europa.eu/regional_policy/sources/policy/themes/cities-report/ state_eu_cities2016_en.pdf. EC (2013). Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions An EU Strategy on Adaptation to climate change. COM [(2013) 216 final]. EC (2015). Towards an EU Research and Innovation policy agenda for Nature-Based Solutions & Re-Naturing Cities. Final Report of the Horizon 2020 Expert Group on ‘Nature-Based Solutions and Re-Naturing Cities' (full version). EC (2016). The Urban Agenda for the EU. [http://ec.europa.eu/regional_policy/en/ policy/themes/urban-development/agenda/ Accessed on June 2017]. Gartland, L. (2008). Heat islands: Understanding and mitigating heat in urban areas (1th ed.). London: Earthscan (Chapter 9). Grimmond, C. S. B., Blackett, M., Best, M. J., Barlow, J., Baik, J. J., Belcher, S. E., et al. (2010). The international urban energy balance models comparison project: First results from Phase 1. Journal of Applied Meteorology and Climatology, 49, 1268–1292. http://dx.doi.org/10.1175/2010JAMC2354.1. Grimmond, C. S. B., Blackett, M., Best, M. J., Baik, J. J., Belcher, S. E., et al. (2011). Initial results from Phase 2 of the international urban energy balance model comparison. International Journal of Climatology, 31, 244–272. http://dx.doi.org/10.1002/joc. 2227. Guattari, C., Evangelisti, L., & Balaras, C. A. (2018). On the assessment of urban heat island phenomenon and its effects on building energy performance: A case study of Rome (Italy). Energy and Buildings, 158, 605–615. http://dx.doi.org/10.1016/j. enbuild.2017.10.050. IPCC (2014). Climate Change 2014: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate ChangeCambridge New York: Cambridge University Press. Kabisch, N., Frantzeskaki, N., Pauleit, S., Naumann, S., Davis, M., Artmann, M., et al. (2016). Nature-based solutions to climate change mitigation and adaptation in urban areas: Perspectives on indicators, knowledge gaps, barriers, and opportunities for action. Ecology and Society, 21(2), 39. http://dx.doi.org/10.5751/ES-08373-210239. Kolokotsa, D., Psomas, A., & Karapidakis, E. (2009). Urban heat island in southern Europe: The case study of Hania. Crete. Solar Energy, 83, 1871–1883. http://dx.doi. org/10.1016/j.solener.2009.06.018. Lemonsu, A., Grimmond, C., & Masson, V. (2004). Modeling the surface energy balance of the core of an old Mediterranean city: Marseille. Journal of Applied Meteorology, 43, 312–327. http://dx.doi.org/10.1175/1520-0450(2004)043<0312:MTSEBO>2.0. CO;2. Lemonsu, A., Belair, S., Mailhot, J., & Leroyer, S. (2010). Evaluation of ×the town energy balance model in cold and snowy conditions during the montreal urban snow experiment 2005. Journal of Applied Meteorology and Climatology, 49, 346–362. http:// dx.doi.org/10.1175/2009JAMC2131.1. Lemonsu, A., Masson, V., Shashua-Bar, L., Erell, E., & Pearlmutter, D. (2012). Inclusion of vegetation in the Town Energy Balance model for modelling urban green areas. Geoscientific Model Development, 5, 1377–1393. http://dx.doi.org/10.5194/gmd-5- 1377-2012. Li, H., Harvey, J. T., & Kendall, A. (2013). Field measurement of albedo for different land cover materials and effects on thermal performance. Building and Environment, 59, 536–546. http://dx.doi.org/10.1016/j.buildenv.2012.10.014. Li, H., Harvey, J. T., Holland, T. J., & Kayhanian, M. (2013). The use of reflective and permeable pavements as a potential practice for heat island mitigation and stormwater management. Environmental Research Letters, 8(1), 14. http://dx.doi.org/10. 1088/1748-9326/8/1/015023. Li, C., Zhou, S., Xiao, Y., Huang, Q., Li, L., & Chan, P. W. (2017). Effects of inflow conditions on mountainous/urban wind environment simulation. Building Simulation, 10(4), 573–588. http://dx.doi.org/10.1007/s12273-017-0348-1. Liu, S., Pan, W., Zhang, H., Cheng, X., Long, Z., & Chen, Q. (2017). CFD simulations of wind distribution in an urban community with a full-scale geometrical model. Building and Environment, 117, 11–23. http://dx.doi.org/10.1016/j.buildenv.2017. 02.021. Müller, N., Kuttler, W., & Barlag, A. B. (2014). Counteracting urban climate change: adaptation measures and their effect on thermal comfort. Theoretical and Applied Climatology, 115(1–2), 243–257. http://dx.doi.org/10.1007/s00704-013-0890-4. Masson, V., Grimmond, C., & Oke, T. R. (2002). Evaluation of the Town Energy Balance (TEB) scheme with direct measurements from dry districts in two cities. Journal of Applied Meteorology, 41, 1011–1026. Masson, V., Gomes, L., Pigeon, G., Liousse, C., Pont, V., Lagouarde, J. P., et al. (2008). The canopy and aerosol particles interactions in TOulouse urban layer (CAPITOUL) experiment. Meteorology and Atmospheric Physics, 102, 135–157. http://dx.doi.org/10. 1007/s00703-008-0289-4. Masson, V., Bonhomme, M., Salagnac, J. L., Briottet, X., & Lemonsu, A. (2014). Solar panels reduce both global warming and urban heat island. Frontiers in Environmental Science, 2, 14. http://dx.doi.org/10.3389/fenvs.2014.00014. Masson, V. (2000). A physically-based scheme for the urban energy budget in atmospheric models. Boundary-Layer Meteorology, 94, 357–397. http://dx.doi.org/10. 1023/A:1002463829265. Mathew, A., Khandelwal, S., & Kaul, N. (2018). Analysis of diurnal surface temperature variations for the assessment of surface urban heat island effect over Indian cities. Energy and Buildings, 159, 271–295. http://dx.doi.org/10.1016/j.enbuild.2017.10. 062. Mohajerani, A., Bakaric, J., & Jeffrey-Bailey, T. (2017). The urban heat island effect, its causes, and mitigation, with reference to the thermal properties of asphalt concrete. Journal of Environmental Management, 197, 522–538. http://dx.doi.org/10.1016/j. jenvman.2017.03.095. Oke, T. R., Mills, G., Christen, A., & Voogt, J. A. (2017). Urban climates. Cambridge Press University. Oke, T. R. (1973). City size and the urban heat island. Atmospheric Environment, 7, 769–779. http://dx.doi.org/10.1016/0004-6981(73)90140-6. Oke, T. R. (1987). Boundary layer climates (2th ed.). London, New York: Routledge. Pigeon, G., Moscicki, M. A., Voogt, J. A., & Masson, V. (2008). Simulation of fall and winter surface energy balance over a dense urban area using the TEB scheme. Meteorology and Atmospheric Physics, 102, 159–171. http://dx.doi.org/10.1007/ s00703-008-0320-9. Reckien, D., Flacke, J., Dawson, R. J., et al. (2014). Climate change response in Europe: What’s the reality? Analysis of adaptation and mitigation plans from 200 urban areas in 11 countries. Climatic Change, 122(1–2), 331–340. http://dx.doi.org/10.1007/ s10584-013-0989-8. Salata, F., Golasi, I., Petitti, D., de Lieto Vollaro, E., Coppi, M., & de Lieto Vollaro, A. (2017). Relating microclimate, human thermal comfort and health during heatwaves: An analysis of heat island mitigation strategies through a case study in an urban outdoor environment. Sustainable Cities and Society, 30, 79–96. http://dx.doi.org/10. 1016/j.scs.2017.01.006. Santamouris, M. (2014). Cooling the cities –A review of reflective and green roof mitigation technologies to fight heat island and improve comfort in urban environments. Solar Energy, 103, 682–703. http://dx.doi.org/10.1016/j.solener.2012.07.003. Sharma, A., Conry, P., Fernando, H. J. S., Hamlet, A. F., Hellmann, J. J., & Chen, F. (2016). Green and cool roofs to mitigate urban heat island effects in the Chicago metropolitan area: evaluation with a regional climate model. Environmental Research Letters, 11, 064004. http://dx.doi.org/10.1088/1748-9326/11/6/064004. Stull, R. B. (1988). An introduction to boundary layer meteorology (1th ed.). Dordrecht: Kluwer Academic Publishers (Chapter 15). Takebayashi, H., & Masakazu Moriyama, M. (2007). Surface heat budget on green roof and high reflection roof for mitigation of urban heat island. Building and Environment, 42, 2971–2979. http://dx.doi.org/10.1016/j.buildenv.2006.06.017. Toparlar, Y., Blocken, B., Maiheu, B., & van Heijst, G. J. F. (2017). A review on the CFD A. Reder et al. Sustainable Cities and Society 39 (2018) 662–673 672 analysis of urban microclimate. Renewable and Sustainable Energy Reviews, 80, 1613–1640. http://dx.doi.org/10.1016/j.rser.2017.05.248. Trusilova, K., Früh, B., Brienen, S., Walter, A., Masson, V., et al. (2013). Implementation of an urban parameterization scheme into the regional climate model COSMO-CLM. Journal of Applied Meteorology and Climatology, 52(10), 2296–2311. http://dx.doi. org/10.1175/JAMC-D-12-0209.1. UN (2015a). Sendai framework for disaster risk reduction 2015–2030, United Nations Office for disaster risk reducton, Geneva, Switzerland. UN (2015b). Transforming our world: The 2030 agenda for sustainable development (A/RES/ 70/1, 25 september 2015), United Nations New York, NY. UN (2017). Resolution adopted by the general assembly on 23 december 2016, 71/256. new urban agenda. A/RES/71/256., United Nations. UNFCCC (2015). Adoption of the Paris Agreement. Decision 1/CP.21 UN Framework Convention on Climate Change. Wang, Y., Berardi, U., & Akbari, H. (2016). Comparing the effects of urban heat island mitigation strategies for Toronto, Canada. Energy and Buildings, 114, 2–19. http://dx. doi.org/10.1016/j.enbuild.2015.06.046. Wouters, H., Demuzere, M., De Ridder, K., & van Lipzig, N. P. (2015). The impact of impervious water-storage parametrization on urban climate modelling. Urban Climate, 11, 24–50. http://dx.doi.org/10.1016/j.uclim.2014.11.005. Wouters, H., Demuzere, M., Blahak, U., Fortuniak, K., et al. (2016). The efficient urban canopy dependency parametrization (SURY) v1.0 for atmospheric modelling: Description and application with the COSMO-CLM model for a Belgian summer. Geoscientific Model Development, 9(9), 3027–3054. http://dx.doi.org/10.5194/gmd-9- 3027-2016. Yadav, N., & Sharma, C. (2018). Spatial variations of intra-city urban heat island in megacity Delhi. Sustainable Cities and Society, 37, 298–306. http://dx.doi.org/10. 1016/j.scs.2017.11.026. Zhao, L., Lee, X., Smith, R. B., & Oleson, K. (2014). Strong contributions of local background climate to urban heat islands. Nature, 511(7508), 216–219. http://dx.doi. org/10.1038/nature13462. Zinzi, M., & Agnoli, S. (2012). Cool and green roofs. An energy and comfort comparison between passive cooling and mitigation urban heat island techniques for residential buildings in the Mediterranean region. Energy and Buildings, 55, 66–76. http://dx.doi. org/10.1016/j.enbuild.2011.09.024. A. Reder et al. Sustainable Cities and Society 39 (2018) 662–673 673en
dc.description.obiettivoSpecifico4A. Oceanografia e climaen
dc.description.journalTypeJCR Journalen
dc.contributor.authorReder, Alfredoen
dc.contributor.authorRianna, Guidoen
dc.contributor.authorMercogliano, Paolaen
dc.contributor.authorCastellari, Sergioen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia-
crisitem.author.orcid0000-0002-5782-8170-
crisitem.author.orcid0000-0003-0956-4243-
crisitem.author.orcid0000-0001-7236-010X-
crisitem.author.orcid0000-0002-7809-2123-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
article.pdf1.18 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 50

4
checked on Feb 10, 2021

Page view(s)

98
checked on Apr 27, 2024

Download(s)

1
checked on Apr 27, 2024

Google ScholarTM

Check

Altmetric