Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/12317
DC FieldValueLanguage
dc.date.accessioned2019-02-27T08:33:14Zen
dc.date.available2019-02-27T08:33:14Zen
dc.date.issued2019en
dc.identifier.urihttp://hdl.handle.net/2122/12317en
dc.description.abstractThe new mineral sbacchiite (IMA 2017-097), Ca2AlF7, was found in a fossil fumarole (1944 eruption, T ! 80 !C) at the rim of the crater of the Vesuvius volcano, Napoli, Italy, associated with gearsksutite, usovite, creedite and opal. It forms elongated crystals up to about 60 lm in length. On the basis of powder X-ray diffraction data and chemical analysis, the mineral was recognized to be identical to the corresponding synthetic phase. Crystals are transparent or translucent and colourless, with vitreous lustre and white streak. The tenacity is brittle. The measured density is 3.08(2) g/cm3, the calculated density is 3.116 g/cm3. The empirical formula, (based on 10 atoms per formula unit, apfu) is Ca2.02Mg0.03Al0.99F6.97. Sbacchiite is orthorhombic, space group Pnma, with a = 7.665(2), b = 6.993(1), c = 9.566(2) Å, V = 512.2(2) Å3 and Z = 4. The eight strongest X-ray powder diffraction lines are [dobs Å(I)(hkl)]: 3.840(45)(200), 3.563(85)(201), 3.499(100)(020), 2.899(55)(013), 2.750(30)(212), 2.281(20)(104), 2.255(52)(302) and 2.173(36)(131). The structure was refined to R = 0.0479 for 457 reflections with I > 2r(I). The asymmetric unit contains one Al3+ and two independent Ca2+ cations and five fluorine anions. Aluminium is octahedrally coordinated by six fluorine atoms; the arrangement of F around the 7-coordinated Ca(1) conforms to a distorted pentagonal bipyramid and that around Ca(2) to a very distorted polyhedron (in 7 + 1 coordination). All the fluorine atoms are threefold coordinated. The structure framework shows ‘‘isolated’’ [AlF6] octahedra, whereas the coordination polyhedra around Ca are linked by common edges [sequence: Ca(1)–Ca(2)– Ca(1). . .] along [010] and the same holds for the connection along [001]. Along [100], however, only the pentagonal bipyramids around Ca(1) are connected by bridging corners.en
dc.language.isoEnglishen
dc.publisher.nameE. Schweizerbart’sche Verlagsbuchhandlung 70176 Stuttgart,Germanyen
dc.relation.ispartofEuropean Journal of Mineralogyen
dc.relation.ispartofseries/31(2019)en
dc.subjectsbacchiiteen
dc.subjectnew mineralen
dc.subjectcalcium aluminium fluorideen
dc.subjectcrystal structureen
dc.subjectfumaroleen
dc.subjectvesuvius volcanoen
dc.titleSbacchiite, Ca2AlF7, a new fumarolic mineral from the Vesuvius volcano, Napoli, Italyen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber153-158en
dc.subject.INGV04.04.05en
dc.identifier.doi10.1127/ejm/2018/0030-2799en
dc.relation.referencesAcquafredda, P. & Paglionico, A. (2004): SEM-EDS microanalyses of micro-phenocrysts of Mediterranean obsidians: a preliminary approach to source discrimination. Eur. J. Mineral., 16, 419–429. Balic´-Zˇ unic´, T., Garavelli, A., Mitolo, D., Acquafredda, P., Leonardsen, E. (2012): Jakobssonite, CaAlF5, a new mineral from fumaroles at the Eldfell and Hekla volcanoes, Iceland. Mineral. Mag., 76, 751–760. Brese, N.E. & O’Keeffe, M. (1991): Bond-valence parameters for solids. Acta Crystallogr., B47, 192–197. Brown, I.D. & Altermatt, D. (1985): Bond-valence parameters from a systematic analysis of the inorganic crystal structure database. Acta Crystallogr., B41, 244–247. Bruker (2001): SAINT. Bruker AXS Inc., Madison, Wisconsin. Campostrini, I. & Gramaccioli, C.M. (2005): Artroeite del Monte Somma-Vesuvio, secondo ritrovamento mondiale. Rivista Mineralogica Italiana, 29, 1, 50–52. Chiodini, G., Marini, L., Russo, M. (2001): Geochemical evidence for the existence of high-temperature hydrothermal brines at Vesuvio volcano, Italy. Geochim. Cosmochim. Acta, 65, 2129–2147. Demartin, F., Campostrini, I., Castellano, C., Russo, M. (2014): Parascandolaite, KMgF3, a new perovskite-type fluoride from Vesuvius. Phys. Chem. Minerals, 41, 403–407. Domsele, R. & Hoppe, R. (1980): The crystal structure of Ca2AlF7. Z. Kristallogr., 153, 317–328. Farrugia, L.J. (1999): WinGX suite for small-molecule single-crystal crystallography. J. Appl. Crystallogr., 32, 837–838. Fischer, R.X. & Tillmanns, E. (1988): The equivalent isotropic displacement factor. Acta Crystallogr., C44, 775–776. Giacovazzo, C. & Menchetti, S. (1969): The crystal structure of prosopite. Naturwissenschaften, 56, 86–87. Holland, T.J.B. & Redfern, S.A.T. (1997): Unit cell refinement from powder diffraction data: the use of regression diagnostics. Mineral. Mag., 61, 65–77. Kampf, A.R., Colombo, F., Gonzalez del Tanago, J. (2010): Carlhintzeite, Ca2AlF7ÆH2O from the Gigante granitic pegmatite, Cordoba Province, Argentina: description and crystal structure. Mineral. Mag., 74, 623–632. Marchetti, F. & Perchiazzi, N. (2000): The crystal structure of gearksutite CaAlF4(OH)ÆH2O. Am. Mineral., 85, 231–235. Parascandola, A. (1951): I minerali del Vesuvio nella eruzione del marzo 1944 e quelli formati durante l’attuale periodo di riposo. Bollettino della Societa` Geologica Italiana, 70, 523–526. — (1960): Notizie vesuviane. Il Vesuvio dal marzo 1948 al dicembre 1958. Boll. Soc. Naturalisti in Napoli, 68, 184. — (1961): Notizie vesuviane. Il Vesuvio dal gennaio 1959 al dicembre 1960. Boll. Soc. Naturalisti in Napoli, 69, 263–298. Pudovkina, Z.V., Chernitsova, N.M., Pyatenko, Y.A. (1973): Refinement of the crystalline structure of prosopite CaAl2- F4(OH)4. J. Struct. Chem., 14, 345–347. Russo, M. & Campostrini, I. (2011): Ammineite, matlockite and post 1944 eruption fumarolic minerals at Vesuvius. Plinius, 37, 312–312. Russo, M., Campostrini, I., Demartin, F. (2014): Fumarolic minerals after the 1944 Vesuvius eruption. Plinius, 40, 306–306. Ruste, J. (1979): X-ray spectrometry. in ‘‘Microanalysis and Scanning Electron Microscopy’’, Maurice, F., Meny, L., Tixier, R., eds. Summer School St-Martin-d’He`res, France, September 11–16, 1978. Les Editions de Physique, Orsay, 215–267. Shannon, R.D. & Fischer, R.X. (2016): Empirical electronic polarizabilities of ions for the prediction and interpretation of refractive indices: oxides and oxysalts. Am. Mineral., 101, 2288–2300. Sheldrick, G.M. (2000): SADABS Area-Detector Absorption Correction Program. Bruker AXS Inc., Madison, WI, US. — (2015): Crystal structure refinement with SHELXL. Acta Crystallogr., C71,3-8en
dc.description.obiettivoSpecifico3V. Proprietà dei magmi e dei prodotti vulcanicien
dc.description.journalTypeJCR Journalen
dc.relation.issn0935-1221en
dc.relation.eissn1617-4011en
dc.contributor.authorCampostrini, Italoen
dc.contributor.authorDemartin, Francescoen
dc.contributor.authorRusso, Massimoen
dc.contributor.departmentUniversita` degli Studi di Milano, Dipartimento di Chimica. Milano, Italyen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptDipartimento di Chimica Strutturale e Stereochimica Inorganica Università di Milano-
crisitem.author.deptDipartimento di Chimica, Universita` degli Studi di Milano,-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.orcid0000-0001-5161-5951-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat
Sbacchiite.pdf2.77 MBAdobe PDFView/Open
Show simple item record

WEB OF SCIENCETM
Citations 50

1
checked on Feb 10, 2021

Page view(s)

64
checked on Apr 27, 2024

Download(s)

75
checked on Apr 27, 2024

Google ScholarTM

Check

Altmetric