Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/12217
DC FieldValueLanguage
dc.date.accessioned2019-02-04T07:05:52Zen
dc.date.available2019-02-04T07:05:52Zen
dc.date.issued2018-03-26en
dc.identifier.urihttp://hdl.handle.net/2122/12217en
dc.description.abstractA detailed 3D image of the Calabro-Ionian subduction system in the central Mediterranean was obtained by means of a seismic tomography, exploiting a large dataset of local earthquakes and computing algorithms able to build a dense grid of measure nodes. Results show that the slab is continuous below the southern sector of the Calabro-Peloritan Arc, but the deformation processes developing at its edges are leading to its progressive narrowing, influencing tectonics and magmatism at the surface, and with possible stress concentration in the tip zones. In the southwest, the deformation occurring at a free slab edge lead to propagation of a vertical lithospheric tear in the overriding plate, which extends along a NW-SE fault system (Aeolian-Tindari-Letojanni) up to about 30 km into the Ionian Sea; further southeast, the lithosphere appears only flexed and not broken yet. In the northeast, the slab seems to break progressively, parallel to the trench. Finally, northwest of Mt. Etna, the tomography highlights low VP that can be related to an upwelling of deep mantle material likely flowing laterally through a window opened by the complete slab detachment.en
dc.language.isoEnglishen
dc.relation.ispartofScientific reportsen
dc.relation.ispartofseries/8 (2018)en
dc.subjectSEISMIC TOMOGRAPHYen
dc.subjectIONIAN SLABen
dc.subjectLITHOSPHERIC TEAR FAULTen
dc.subjectSLAB NARROWINGen
dc.titleSlab narrowing in the Central Mediterranean: the Calabro-Ionian subduction zone as imaged by high resolution seismic tomographyen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumberid 5178en
dc.identifier.doi10.1038/s41598-018-23543-8en
dc.relation.references1. Carminati, E. & Doglioni, C. Mediterranean Tectonics. Encyclopedia of Geology 2, 135-146, https://doi.org/10.1016/B0-12-369396-9/00135-0 (2005). 2. Faccenna, C. et al. Mantle dynamics in the Mediterranean. Rev. Geophys. 52, 283-332, https://doi.org/10.1002/2013RG000444 (2014). 3. Schellart, W. P., Freeman, J., Stegman, D. R., Moresi, L. & May, D. Evolution and diversity of subduction zones controlled by slab width. Nature 446, 308-311, https://doi.org/10.1038/nature05615 (2007). 4. Rosenbaum, G., Gasparon, M., Lucente, F. P., Peccerillo, A. & Miller, M. S. Kinematics of slab tear faults during subduction segmentation and implications for Italian magmatism. Tectonics 27 (TC2008), https://doi.org/10.1029/2007TC002143 (2008). 5. Rovida, A., Locati, M., Camassi, R., Lolli, B. & Gasperini, P. (eds) CPTI15, the 2015 version of the Parametric Catalogue of Italian Earthquakes. Istituto Nazionale di Geofisica e Vulcanologia, https://doi.org/10.6092/INGV.IT-CPTI15 (2016). 6. Faccenna, C. et al. Constraints on mantle circulation around the deforming Calabrian slab. Geophys. Res. Lett. 32 (L06311), https://doi.org/10.1029/2004GL021874 (2005). 7. Neri, G. et al. How lithospheric subduction changes along the Calabrian Arc in southern Italy: geophysical evidences. Int. J. Earth Sci. 101, 1949-1969, https://doi.org/10.1007/s00531-012-0762-7 (2012). 8. Argnani, A. et al. Active tectonics along the submarine slope of south-eastern Sicily and the source of the 11 January 1693 earthquake and tsunami. Nat. Hazards Earth Syst. Sci. 12, 1311-1319, https://doi.org/10.5194/nhess-12-1311-2012 (2012). 9. Polonia, A. et al. The Ionian and Alfeo–Etna fault zones: New segments of an evolving plate boundary in the central Mediterranean Sea? Tectonophysics 675, 69-90, http://dx.doi.org/10.1016/j.tecto.2016.03.016 (2016). 10. Gutscher, M.-A. et al. Tectonic expression of an active slab tear from high-resolution seismic and bathymetric data offshore Sicily (Ionian Sea). Tectonics 35, 39-54, https://doi.org/10.1002/2015TC003898 (2016). 11. Gutscher, M.-A. et al. Active tectonics of the Calabrian subduction revealed by new multi-beam bathymetric data and high-resolution seismic profiles in the Ionian Sea (Central Mediterranean). Earth Planet. Sci. Lett. 461, 61-72, https://doi.org/10.1016/j.epsl.2016.12.020 (2017). 12. Maesano, F. E., Tiberti, M. M. & Basili, R. The Calabrian Arc: three-dimensional modelling of the subduction interface. Scientific Reports 7 (8887), https://doi.org/10.1038/s41598-017-09074-8 (2017). 13. Govers, R. & Wortel, M. J. R. Lithosphere tearing at STEP faults: response to edges of subduction zones. Earth Planet. Sci. Lett. 236, 505-523, https://doi.org/10.1016/j.epsl.2005.03.022 (2005). 14. Hirahara, K. & Hasemi, A. Tomography of subduction zones using local and regional earthquakes and teleseisms. In: Iyer, H.M. & Hirahara, K. (eds) Seismic Tomography: Theory and Practice. CRC Press, Boca Raton, Fla, 519-562. Chapman and Hall, London (1993). 15. Cimini, G. B. & Marchetti, A. Deep structure of peninsular Italy from seismic tomography and subcrustal seismicity. Ann. Geophys. 49 (1), 331-345, (2006). 16. Koulakov, I. LOTOS code for local earthquake tomographic inversion: Benchmarks for testing tomographic algorithms. Bull. Seismol. Soc. Am. 99 (1), 194-214, https://doi.org/10.1785/0120080013 (2009). 17. Zhang, H., Thurber, C. & Bedrosian, P. Joint inversion for Vp, Vs, and Vp/Vs at SAFOD, Parkfield, California. Geochem. Geophys. Geosyst. 10 (Q110032), https://doi.org/10.1029/2009GC002709 (2009). 18. Calò, M., Dorbath, C., Luzio, D., Rotolo, S. G. & D’Anna, G. Seismic velocity structures of Southern Italy from tomographic imaging of the Ionian slab and petrological inferences. Geophys. J. Int. 191 (2), 751-764, https://doi.org/10.1111/j.1365-246X.2012.05647.x (2012). 19. Wortel, M. J. R. & Spakman, W. Subduction and slab detachment in the Mediterranean-Carpathian region. Science 290 (5498), 1910–1917, https://doi.org/10.1126/science.290.5498.1910 (2000). 20. Scarfì, L., Messina, A. & Cassisi, C. Sicily and Southern Calabria focal mechanism database: a valuable tool for the local and regional stress field determination. Ann. Geophys., 56 (1), D0109, https://doi.org/10.4401/ag-6109 (2013). 21. Pondrelli, S. et al. The Italian CMT dataset from 1977 to the present. Phys. Earth Planet. Int. 159 (3-4), 286-303, https://doi.org/doi:10.1016/j.pepi.2006.07.008 (2006). 22. Mitrofan, H. et al. Lateral detachment in progress within the Vrancea slab (Romania): Inferences from intermediate-depth seismicity patterns. Geophys J Int. 205, 864–875, https://doi.org/doi:10.1093/gji/ggv533 (2016). 23. Wortel, R., Govers, R. & Spakman, W. Continental collision and the STEP-wise evolution of convergent plate boundaries: from structure to dynamics. In: Lallemand, S. & Funiciello, F. (eds) Subduction Zone Geodynamics. Frontiers in Earth Sciences 3, 47-59. Springer, Berlin, Heidelberg, https://doi.org/10.1007/978-3-540-87974-9_3 (2009). 24. Barreca, G., Scarfì, L., Cannavò, F., Koulakov, I. & Monaco, C. New structural and seismological evidence and interpretation of a lithospheric-scale shear zone at the southern edge of the Ionian subduction system (central-eastern Sicily, Italy). Tectonics 35 (6), 1489-1505, https://doi.org/10.1002/2015TC004057 (2016). 25. De Guidi, G. et al. Multidisciplinary study of the Tindari Fault (Sicily, Italy) separating ongoing contractional and extensional compartments along the active Africa–Eurasia convergent boundary. Tectonophysics 588, 1-17, http://dx.doi.org/10.1016/j.tecto.2012.11.021 (2013). 26. Barreca, G. et al. New insights in the geodynamics of the Lipari-Vulcano area (Aeolian Archipelago, southern Italy) from geological, geodetic and seismological data. J. Geodyn. 82, 150-167, https://doi.org/10.1016/j.jog.2014.07.003 (2014). 27. Cultrera, F. et al. Active faulting and continental slope instability in the Gulf of Patti (Tyrrhenian side of NE Sicily, Italy): a field, marine and seismological joint analysis. Nat. Hazards 86 (S2), 253-272, https://doi.org/10.1007/s11069-016-2547-y (2017). 28. Cultrera, F. et al. Structural architecture and active deformation pattern in the northern sector of the Aeolian-Tindari-Letojanni fault system (SE Tyrrhenian Sea-NE Sicily) from integrated analysis of field, marine geophysical, seismological and geodetic data. Italian J. Geosci. 136 (3), 399-417, https://doi.org/10.3301/IJG.2016.17 (2017). 29. Scarfì, L., Langer, H. & Scaltrito, A. Seismicity, seismotectonics and crustal velocity structure of the Messina Strait (Italy). Phys. Earth Planet. Int. 177, 65-78, https://doi.org/10.1016/j.pepi.2009.07.010 (2009). 30. Scarfì, L., Barberi, G., Musumeci, C. & Patanè, D. Seismotectonics of northeastern Sicily and southern Calabria (Italy): New constraints on the tectonic structures featuring in a crucial sector for the central Mediterranean geodynamics. Tectonics 35, 812-832, https://doi.org/10.1002/2015TC004022 (2016). 31. Byrne, D. E., Davis, D. M. & Sykes, L. R. Loci and maximum size of thrust earthquakes and the mechanics of the shallow region of subduction zones. Tectonics 7 (4), 833-857, https://doi.org/10.1029/TC007i004p00833 (1988). 32. Hyndman, R. D., Yamano, M. & Oleskevich, D. A. The seismogenic zone of subduction thrust faults. Island Arc 6, 244–260, https://doi.org/10.1111/j.1440-1738.1997.tb00175.x (1997). 33. Russo, R. M. & Silver, P. G. Trench-parallel flow beneath the Nazca plate from seismic anisotropy. Science 263 (5150), 1105-1111, https://doi.org/10.1126/science.263.5150.1105 (1994). 34. Schellart, W. P. Kinematics of subduction and subduction-induced flow in the upper mantle. J. Geophys. Res. 109 (B07401), https://doi.org/10.1029/2004JB002970 (2004). 35. Dougherty, S. L. & Clayton, R. W. Seismicity and structure in central Mexico: Evidence for a possible slab tear in the South Cocos plate. J. Geophys. Res. Solid Earth 119, 3424-3447, https://doi.org/10.1002/2013JB010883 (2014). 36. Civello, S. & Margheriti, L. Toroidal mantle flow around the Calabrian slab (Italy) from SKS splitting. Geophys. Res. Lett. 31 (L10601), https://doi.org/10.1029/2004GL019607 (2004). 37. Palano, M., Piromallo, C. & Chiarabba, C. Surface imprint of toroidal flow at retreating slab edges: The first geodetic evidence in the Calabrian subduction system. Geophys. Res. Lett. 44 (2), 845-853, https://doi.org/doi:10.1002/2016GL071452 (2017). 38. Schiano, P., Clocchiatti, R., Ottolini, L. & Busà, T. Transition of Mount Etna lavas from a mantle-plume to an island-arc magmatic source. Nature 412, 900-904, https://doi.org/10.1038/35091056 (2001). 39. Tonarini, S., Armienti, P., D’Orazio, M. & Innocenti, F. Subduction-like fluids in the genesis of Mt. Etna magmas: evidence from boron isotopes and fluid mobile elements. Earth Planet. Sci. Lett. 192 (4), 471-483, https://doi.org/10.1016/S0012-821X(01)00487-3 (2001). 40. Gvirtzman, Z. & Nur, A. The formation of Mount Etna as the consequence of slab rollback. Nature 401, 782-785, http://dx.doi.org/10.1038/44555 (1999). 41. Barreca, G., Branca, S. & Monaco, C. Three-dimensional modeling of Mount Etna volcano: volume assessment, trend of eruption rates and geodynamic significance. Tectonics https://doi.org/10.1002/2017TC004851 (2018). 42. De Guidi, G. et al. Geological, seismological and geodetic evidence of active thrusting and folding south of Mt. Etna (eastern Sicily): Revaluation of “seismic efficiency” of the Sicilian Basal Thrust. J. Geodyn. 90, 32-41, https://doi.org/10.1016/j.jog.2015.06.001 (2015). 43. Faccenna, C. et al. Topography of the Calabria subduction zone (southern Italy): Clues for the origin of Mt. Etna. Tectonics 30 (1), https://doi.org/10.1029/2010TC002694 (2011). 44. Calò, M., Dorbath, C., Luzio, D., Rotolo, S. G. & D’Anna, G. Local earthquake tomography in the Southern Tyrrhenian region of Italy: Geophysical and petrological inferences on the subducting lithosphere. In: Lallemand, S. & Funiciello, F. (eds) Subduction Zone Geodynamics. Frontiers in Earth Sciences 3, 85-99. Springer, Berlin, Heidelberg, https://doi.org/10.1007/978-3-540-87974-9_5 (2009). 45. Chatterjee, S. N., Pitt, A. M. & Iyer, H. M. Vp/Vs ratios in the Yellowstone National Park region, Wyoming. J. Volcanol. Geotherm. Res. 26 (3-4), 213-230, https://doi.org/10.1016/0377-0273(85)90057-5 (1985). 46. Ryan, W. B. F. et al. Global Multi-Resolution Topography (GMRT) synthesis data set. Geochem. Geophys. Geosyst. 10 (Q03014), https://doi.org/10.1029/2008GC002332 (2009).en
dc.description.obiettivoSpecifico1T. Struttura della Terraen
dc.description.journalTypeJCR Journalen
dc.relation.eissn2045-2322en
dc.contributor.authorScarfì, Lucianoen
dc.contributor.authorBarberi, Graziellaen
dc.contributor.authorBarreca, Giovannien
dc.contributor.authorCannavò, Flavioen
dc.contributor.authorKoulakov, I.en
dc.contributor.authorPatanè, Domenicoen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italiaen
dc.contributor.departmentDipartimento di Scienze Biologiche, Geologiche e Ambientali, Università di Catania, Sezione di Scienze della Terra, Italyen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italiaen
dc.contributor.departmentTrofimuk Institute of Petroleum Geology and Geophysics, Novosibirsk, Russiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia-
crisitem.author.deptDipartimento di Scienze Biologiche, Geologiche e Ambientali - Sezione di Scienze della Terra, Università di Catania-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia-
crisitem.author.deptIPGG SB RAS, Novosibirsk, Russia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia-
crisitem.author.orcid0000-0002-5995-3880-
crisitem.author.orcid0000-0002-8273-0458-
crisitem.author.orcid0000-0001-7550-8579-
crisitem.author.orcid0000-0001-9410-5126-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat
Scarf-_et_al-2018-Scientific_Reports.pdf9.04 MBAdobe PDFView/Open
Show simple item record

WEB OF SCIENCETM
Citations 5

11
checked on Feb 10, 2021

Page view(s)

629
checked on Apr 24, 2024

Download(s)

13
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric