Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/11987
DC FieldValueLanguage
dc.date.accessioned2019-01-02T07:42:45Zen
dc.date.available2019-01-02T07:42:45Zen
dc.date.issued2018-01-01en
dc.identifier.urihttp://hdl.handle.net/2122/11987en
dc.description.abstractInterminimum changes of June noontime monthly median foF1 were analyzed for European and Japanese ionosonde stations over the period of five (Moscow six) solar cycles. The magnitude of these changes is different at different stations and depends on the solar minima considered. In particular, both European and Japanese stations manifest a pronounced foF1 change between 1996/1997 and 2008/2009 solar minima, the latter being the deepest one. For the first time, the total EUV solar flux with λ ≤ 1,050 Å has been retrieved for the 1946–2015 period using observed June monthly median foF1. The deep solar minimum in 2008/2009 was the lowest one among the last six solar cycles comparing the retrieved EUV. The change from 1996/1997 to 2008/2009 in the retrieved EUV is ~2.0%, and this is much less than the difference of ~10–12% being discussed in the literature. A 10% interminimum change in the total EUV flux results in neutral temperature and gas density, which are larger in 2008 than in 1996, and this contradicts the satellite drag neutral gas density observations. The mechanism of foF1 interminimum changes is based on an interplay between molecular (NO+ and O2 +) and O+ ions. The main contribution (>72%) to the interminimum NmF1 change provides [M+] ions via the total ion production rate variation, the rest is provided via O+ ions. The absence (or inversed) difference in foF1 between 1996 and 2008 minima implies that neutral temperature and density are larger in 2008 than in 1996, and this contradicts the satellite drag observations.en
dc.language.isoEnglishen
dc.relation.ispartofJournal of Geophysical Research: Space Physicsen
dc.relation.ispartofseries1/123(2018)en
dc.subjectLong term trend in the ionosphereen
dc.subjectThermosphereen
dc.titleInterminimum foF1 Differences and Their Physical Interpretationen
dc.typearticleen
dc.description.statusPublisheden
dc.description.pagenumber768-780en
dc.subject.INGV01.02. Ionosphereen
dc.identifier.doi10.1002/2017JA024831en
dc.relation.referencesAraujo-Pradere, E.A., R. Redmon, M. Fedrizzi, R.Viereck, T.J. Fuller-Rowell (2011), Some characteristics of the ionospheric behavior during the Solar cycle 23 – 24 minimum Solar Phys., 274, 439–456 DOI 10.1007/s11207-011-9728-3 Banks, P.M. and G. Kockarts (1973), Aeronomy, Academic Press, New York, London Chapman, S. (1931), The absorption and dissociative or ionizing effect of monochromatic radiation in a atmosphere on a rotating Earth, Proc. Roy. Soc., London, 43(1), 26-45 and 43(5), 483-501. Chen, Y., Liu, L., and Wan, W.(2011), Does the F10,7 index correctly describe solar EUV flux during the deep solar minimum of 2007 – 2009 ? J. Geophys. Res., 116, A04304, doi:10.1029/2010JA016301. Didkovsky, L., and S. Wieman (2014), Ionospheric total electron contents (TECs) as indicators of solar EUV changes during the last two solar minima, J. Geophys. Res. Space Physics, 119, 4175–4184, doi:10.1002/2014JA019977. Emmert, J. T., S. E. McDonald, D. P. Drob, R. R. Meier, J. L. Lean, and J. M. Picone (2014), Attribution of interminima changes in the global thermosphere and ionosphere, J. Geophys. Res. Space Physics, 119, 6657–6688, doi:10.1002/2013JA019484. Emmert, J. T. (2015), Altitude and solar activity dependence of 1967–2005 thermospheric density trends derived from orbital drag, J. Geophys. Res. Space Physics, 120, 2940–2950, doi:10.1002/2015JA021047 Emmert, J. T., A. J. Mannucci,S. E. McDonald, and P. Vergados (2017), Attribution of interminimum changes in global and hemispheric total electron content, J. Geophys. Res. Space Physics,122, 2424–2439, doi:10.1002/ 2016JA023680. Hedin, A.E. (1987), MSIS-86 thermospheric model, J. Geophys. Res., 92, 4649-4662. Hierl, P.M., Dotan, I., Seeley, J.V., Van Doran, J.M., Morris, R. and Viggiano, A.A., Rate coefficients for the reactions of O+ with N2 and O2 as a function of temperature (300-1800 K), J. Chem. Phys.,106 (9), 3540-3544, 1997. Hoffman, J. H., W. B. Hanson, C. R. Lippincott and E. E. Ferguson (1973), The Magnetic Ion-Mass Spectrometer on Atmosphere Explorer, Radio Sci., 8, 325. Huang, J., Y. Hao, D. Zhang, and Z. Xiao (2017), Revisiting interminima solar EUV change using adjusted SOHO SEM data, J. Geophys. Res.Space Physics, 122, 3420–3429, doi:10.1002/2016JA023664. Jee, G., H.-B. Lee, and S. C. Solomon (2014), Global ionospheric total electron contents (TECs) during the last two solar minimum periods, J. Geophys. Res. Space Physics, 119, 2090–2100, doi:10.1002/2013JA019407. Ivanov-Kholodny, G.S. and G.M. Nikoljsky (1969): The Sun and the Ionosphere, Nauka, Moscow, pp. 455 (in Russian). Lee, C.-C. (2016), Comparison of F1 layer critical frequency between recent two solar minimums, J. Geophys. Res. Space Physics, 121, 9090–9098, doi:10.1002/2016JA023026 Liu, L., Y. Chen, H. Le, V.I. Kurkin, N.M. Polekh, and C.-C. Lee (2011), The ionosphere under extremely prolonged low solar activity, J. Geophys. Res., 116, A04320, doi:10.1029/2010JA016296, 2011. Liu, L., Yang, J., Le, H., Chen, Y., Wan, W., and Lee, C.-C. (2012), Comparative study of the equatorial ionosphere over Jicamarca during recent two solar minima, J. Geophys. Res., 117, A01315, doi:10.1029/2011JA017215, 2012. Mikhailov, V.V., Yu. L. Terekhin, and C.U. Wagner (1989), Statistical estimation of the theoretical ionosphere models accuracy at F1-region heights under low solar activity, Geomagn. Aeronom., 24, 861-863 (in Russian). Mikhailov, A.V. and K. Schlegel (2003), Geomagnetic storm effects at F1-layer heights from incoherent scatter observations, Ann. Geophysicae, 21, 583-596. Mikhailov, A.V. and L. Perrone (2016a), Geomagnetic control of the mid-latitude daytime foF1 and foF2 long-term variations: Physical interpretation using European observations, J. Geophys. Res. Space Physics, 121, 7193–7203, doi:10.1002/2016JA022716. Nusinov, A.A. (1992), Models for prediction of EUV and X-ray solar radiation based on 10.7-cm radio emission., Proc. Workshop on Solar Electromagnetic Radiation for Solar Cycle 22, Boulder, Co., July 1992, Ed. R.F. Donnely, NOAA ERL. Boulder, Co., USA, 354-359. Mikhailov, A. V., and L. Perrone (2016b), Thermospheric parameters long-term variations retrieved from ionospheric observations in Europe, J. Geophys. Res. Space Physics, 121, 11,574-11,583 , doi:10.1002/2016JA023234. Munninghoff, D.E. (1979), Ion and electron temperatures in the topside ionosphere, Aeronomy Rep., 86, Aeronom. Lab. Univ. Illinois, Urbana. Qian, L., S. C. Solomon, and R. G. Roble (2014), Secular changes in the thermosphere and ionosphere between two quiet Sun periods, J. Geophys. Res. Space Physics, 119, 2255–2262, doi:10.1002/2013JA019438. Reinisch, B.W., I.A. Galkin, G. Khmyrov, A. Kozlov, and D.F. Kitrosser (2004), Automated collection and dissemination of ionospheric data from the digisonde network, Adv. Radio Sci. 2, 241-247. Richards, P.G. (2011), Reexamination of ionospheric photochemistry, J. Geophys. Res., 116, A08307, doi:10.1029/2011JA016613. Richards, P.G., and D.G. Torr (1988), Ratios of photoelectron to EUV ionization rates for aeronomic studies, J. Geophys. Res., 93, 4060-4066. Richards, P.G., J.A. Fennelly, and D.G. Torr (1994), EUVAC: A solar EUV flux model for aeronomic calculations, J. Geophys. Res., 99, 8981-8992. Rishbeth, H. and O.K. Garriott (1969), Introduction to ionospheric physics, Academic Press, New York and London. Solomon, S.C., T.N. Woods, L.V. Didkovsky, J.T. Emmert, and L. Qian (2010), Anomalously low exreme-ultraviolet irradiance and thermospheric density during solar minimum, Geophys. Res. Lett., 37, L16103, doi:10.1029/2010GL044468. Solomon, S.C., L. Qian, L.V. Didkovsky, R.A.Viereck, and T.N. Woods,(2011), Causes of low thermospheric density during the 2007-2009 solar minimum, J. Geophys. Res., 116, A00H07, doi:10.1029/2011JA016508. Solomon, S. C., L. Qian, and A. G. Burns (2013), The anomalous ionosphere between solar cycles 23 and 24, J. Geophys. Res. Space Physics, 118, 6524–6535, doi:10.1002/jgra.50561. Torr, M.R., D.G. Torr, R.A. Ong, and H.E. Hinteregger (1979), Ionization frequencies for major thermospheric constituents as a function of solar cycle 21, Geophys. Res. Lett., 6, 771-774.en
dc.description.obiettivoSpecifico2A. Fisica dell'alta atmosferaen
dc.description.journalTypeJCR Journalen
dc.contributor.authorMikhailov, A. V.en
dc.contributor.authorPerrone, Loredanaen
dc.contributor.departmentIZMIRANen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptPushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation (IZMIRAN), Troitsk, Moscow Region 142190, Russia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.orcid0000-0003-4335-0345-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent01. Atmosphere-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
Show simple item record

WEB OF SCIENCETM
Citations 10

3
checked on Feb 10, 2021

Page view(s)

107
checked on Apr 24, 2024

Download(s)

32
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric