Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/11675
DC FieldValueLanguage
dc.date.accessioned2018-04-06T09:46:38Zen
dc.date.available2018-04-06T09:46:38Zen
dc.date.issued2017en
dc.identifier.urihttp://hdl.handle.net/2122/11675en
dc.description.abstractMagma is transported in the crust mainly by dike intrusions. In volcanic areas, dikes can ascend toward the free surface and also move by lateral propagation, eventually feeding flank eruptions. Understanding dike mechanics is a key to forecasting the expected propagation and associated hazard. Several studies have been conducted on dike mechanisms and propagation; however, a less in-depth investigated aspect is the relation between measured dike-induced deformation and the seismicity released during its propagation. We individuated a simple x that can be used as a proxy of the expected mechanical energy released by a propagating dike and is related to its average thickness. For several intrusions around the world (Afar, Japan, and Mount Etna), we correlate such mechanical energy to the seismic moment released by the induced earthquakes. We obtain an empirical law that quantifies the expected seismic energy released before arrest. The proposed approach may be helpful to predict the total seismic moment that will be released by an intrusion and thus to control the energy status during its propagation and the time of dike arrest.en
dc.language.isoEnglishen
dc.relation.ispartofGephysical Research Lettersen
dc.relation.ispartofseries/44 (2017)en
dc.subjectdike propagationen
dc.subjectdeformation modelingen
dc.subjectseismic releaseen
dc.titleDike propagation energy balance from deformation modeling and seismic releaseen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber5486-5494en
dc.subject.INGV04.03. Geodesyen
dc.subject.INGV04.08. Volcanologyen
dc.identifier.doi10.1002/2017GL074008en
dc.relation.referencesAcocella, V., M. Neri, and G. Norini (2013), An overview of experimental models to understand a complex volcanic instability: Application to Mount Etna, Italy. Journal of Volcanology and Geothermal Research 251, 98–111 Aloisi, M., A. Bonaccorso, and S. Gambino (2006), Imaging composite dike propagation (Etna 2002, case), J. Geophys. Res., 111, B06404, doi:10.1029/2005JB003908 Alparone, S., V. Maiolino, A. Mostaccio, A. Scaltrito, A. Ursino, G. Barberi, S. D’Amico, G. Di Grazia, E. Giampiccolo, C. Musumeci, L. Scarfì, and L. Zuccarello (2015), Instrumental seismic catalogue of Mt. Etna earthquakes (Sicily, Italy): ten years (2000-2010) of instrumental recordings, Annals of Geophysics, 58, 4, doi:10.4401/ag-6591 Aoki, Y., P. Segall, T. Kato, P. Cervelli, and S. Shimada (1999), Imaging Magma Transport During the 1997 Seismic Swarm off the Izu Peninsula, Japan, Science, Vol. 286, Issue 5441, pp. 927-930, DOI: 10.1126/science.286.5441.927 Bonaccorso, A. (1996), A Dynamic inversion for modelling volcanic sources through ground deformation data (Etna 1991-92), Geophysical Research Letters, 23, 5, 451-454. Bonaccorso, A. (1999), The march 1981 Mt. Etna eruption inferred through ground deformation modelling. Physics of the Earth and Planetary Interiors, 112, 125-136. Bonaccorso, A., and P.M. Davis (1993), Dislocation modelling of the 1989 dike intrusion into the flank of the Mt. Etna, Sicily. Journal Geophysical Research, 98, n.3, 4261-4268. Bonaccorso, A., M. Aloisi, and M. Mattia (2002), Dike emplacement forerunning the Etna July 2001 eruption modelled through continuous tilt and GPS data, Geophysical Research Letters, v.29, n.13. Bonafede, M., and E. Rivalta (1999), The tensile dislocation problem in a layered elastic medium, Geophys J Int (1999) 136 (2): 341-356, DOI:https://doi.org/10.1046/j.1365-246X.1999.00645.x Branca, S., D. Carbone, and F. Greco (2003), Intrusive mechanism of the 2002 NE-Rift eruption at Mt. Etna (Italy) inferred through continuous microgravity data and volcanological evidences, Geophys. Res. Lett., 30(20), 2077, doi:10.1029/2003GL018250. Daniels, K. A., and T. Menand (2015), An experimental investigation of dyke injection under regional extensional stress, J. Geophys. Res. Solid Earth, 120, 2014–2035, doi:10.1002/2014JB011627. Delaney, P.T., and D.D. Pollard (1981), Deformation and host rocks and flow of magma during growth of Minette dikes and breccia-bearing intrusions near Ship Rock, New Mexico, Geological Survey Professional Paper 1202, USGS Washington Delaney, P.T., and A.E. Gartner (1997), Physical processes of shallow mafic dike emplacement near the San Rafael Swell, Utah. Geol Soc Am. Bull 109:1177–1192 Del Negro,C., Cappello, A., Bilotta, G., Ganci, G., Herault, A. (2016). Risk from lava flow inundations in densely populated areas: the case of Etna volcano, abstract V12A-08, AGU Fall Meeting, 12-16 December 2016, San Francisco Ferrari, L., V.H. Garduno, and M. Neri (1991), I dicchi della Valle del Bove, Etna: un metodo per stimare le dilatazioni di un apparato vulcanico, Mem. Soc.Geol.It., 47, 495-508 (in italian with english abstract).Geshi, N., S. Kusumoto, and A. Gudmundsson (2010), Geometric difference between non-feeder and feeder dikes, Geology, March 2010; v. 38; no. 3; p. 195–198; doi: 10.1130/G30350.1 Geshi, N., S. Kusumoto, and A. Gudmundsson (2012), Effects of mechanical layering of host rocks on dike growth and arrest, Journal of Volcanology and Geothermal Research, 223–224, 74–82 Geshi, N., and T. Oikawa (2014), The spectrum of basaltic feeder systems from effusive lava eruption to explosive eruption at Miyakejima volcano, Japan. Bull. Volcanol. 76:797, DOI 10.1007/s00445-014-0797-7 Giampiccolo, E., S. D’Amico, D. Patanè, and S. Gresta (2007), Attenuation and Source Parameters of Shallow Microearthquakes at Mt. Etna Volcano, Italy. Bulletin of the Seismological Society of America, Vol. 97, No. 1B, pp. 184–197, doi: 10.1785/0120050252 Grandin, R., A. Socquet, E. Jacques, N. Mazzoni, J.B. de Chebalier, and G. King (2010), Sequence of rifting in Afar, Manda-Hararo rift, Ethiopia, 2005–2009: time–space evolution and interactions between dikes from interferometric synthetic aperture radar and static stress change modeling. J. Geophys. Res. 115, B10413. Grandin, R., E. Jacques, A. Nercessian, A. Ayele, C. Doubre, A. Socquet, D. Keir, M. Kassim, A. Lemarchand and G. C. P. King (2011), Seismicity during lateral dike propagation: Insights from new data in the recent Manda Hararo–Dabbahu rifting episode (Afar, Ethiopia), Geochem. Geophys. Geosyst. V.12, N-4, doi:10.1029/2010GC003434 Griffith, A.A. (1921), The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London, Series A, 221: 163–198. Gudmundsson, A. (1983), Form and dimensions of dykes in eastern Iceland, Tectonophysics, 95, 295-307. Gudmundsson, A. (2002), Emplacement and arrest of sheets and dykes in central volcanoes, Journal of Volcanology and Geothermal Research, 116, 279-298 Gudmundsson, A. (2003), Surface stresses associated with arrested dykes in rift zones, Bull. Volcanol. 65, 606–619. Gudmundsson, A. (2006), How local stresses control magma-chamber ruptures, dyke injections, and eruptions in composite volcanoes, Earth-Science Reviews, 79, 1–31 Gudmundsson, A. (2009), Toughness and failure of volcanic edifices, Tectonophysics, 471, 27-35 Gudmundsson, A. (2011), Deflection of dykes into sills at discontinuities and magma-chamber formation, Tectonophysics, 500, 50–64 Gudmundsson, A. (2016), The mechanics of large volcanic eruptions, Earth-Science Reviews, 163, 72–93 Gudmundsson, A., L.B. Marinoni, and J. Martí (1999), Injection and arrest of dykes: Implications for volcanic hazards: Journal of Volcanology and Geothermal Research, v.88, p.1–13, doi: 10.1016/S0377-0273[98]00107-3 Heimpel, M., and P. Olson (1994), Buoyancy-driven fracture and magma transport through the lithosphere: models and experiments. In: Ryan, M. (Ed.), Magmatic Systems. Academic Press, pp. 223–240. Hotta, K., M. Iguchi, and T. Tameguri (2016). Rapid dike intrusion into Sakurajima volcano on August 15, 2015, as detected by multi-parameter ground deformation observations, Earth Planets and Space, 68:68, DOI 10.1186/s40623-016-0450-0 Ito, T., and S. Yoshioka (2002), A dike intrusion model in and around Miyakejima, Nijima and Kozushima in 2000, Tectonophysics, 171–187. Irwin, G.R. (1957), Analysis of stresses and strains near the end of a crack traversing a plate, J. Applied Mechanics, v.24, 361-364, Lister, J.R., and R.C. Kerr (1991), Fluid-mechanical models of crack propagation and t heir application to magma transport in dykes J. Geophys.Res., 96, 10,049-10,077. Kavanagh, J.L., and R.S.J. Sparks (2011), Insights of dyke emplacement mechanics from detailed 3D dyke thickness datasets, Journal of the Geological Society, London, Vol. 168, pp. 965–978. doi: 10.1144/0016-76492010-137. Klausen, M.B. (2006), Similar dyke thickness variation across three volcanic rifts in the North Atlantic region: Implications for intrusion mechanisms, Lithos, 92 , 137–153 Krumbholz, M., C.F. Hieronymus, S. Burchardt, V.R. Troll, D. C. Tanner, and N. Friese (2014), Weibull-distributed dyke thickness reflects probabilistic character of host-rock strength, Nature Communications, 5:3272, DOI: 10.1038/ncomms4272, Ji, L., Z. Lu, D. Dzurisin, and S. Senyukov (2013), Pre-eruption deformation caused by dike intrusion beneath Kizimen volcano, Kamchatka, Russia, observed by InSAR, Journal of Volcanology and Geothermal Research, 256, 87–95 Maccaferri, F. , E. Rivalta, L. Passarelli, and Y. Aoki (2015), On the mechanisms governing dike arrest: Insight from the 2000 Miyakejima dike injection, Earth and Planetary Science Letters, V. 434, 64–7, 42016, http://dx.doi.org/10.1016/j.epsl.2015.11.024 Marinoni, L.B. (2000), Crustal extension from exposed sheet intrusions: review and method proposal, Journal of Volcanology and Geothermal Research, v. 107, n. 1–3, 27–46 McGarr, A. (2014), Maximum magnitude earthquakes induced by fluid injection, J. Geophys. Res. Solid Earth, 119 (2), pp. 1008–1019 McLeod, P., and S. Tait (1999), The growth of dykes from magma chambers, Journal of Volcanology and Geothermal Research, 92, 3–4, 231–245 Menand, T., and S. Tait, (2002), The propagation of a buoyant liquid-filled fissure from a source under constant pressure: an experimental approach, J. Geophys. Res. 107 [B11], 2306. Morishita, Y., T. Kobayashi, and H. Yarai (2016), Three-dimensional deformation mapping of a dike intrusion event in Sakurajima in 2015 by exploiting the right- and left-looking ALOS-2 InSAR, Geophys. Res. Lett., 43, 4197-4204, doi:10.1002/2016GL068293. Morita, Y., S. Nakao, and Y. Hayashi (2006), A quantitative approach to the dike intrusion process inferred from a joint analysis of geodetic and seismological data for the 1998 earthquake swarm off the east coast of Izu Peninsula, central Japan, J. Geophys. Res., 111, B06208, doi:10.1029/2005JB003860 Murray, J.B., and A.D. Pullen (1984), Three dimensional model of the feeder conduit of the 1983 eruption of Mt. Etna volcano from ground deformation measurements, Bull. Volc., 47, 4 [2], 1145- 1163. Napoli, R., G. Currenti, C. Del Negro, F. Greco, and D. Scandura (2008), Volcanomagnetic evidence of the magmatic intrusion on 13th May 2008 Etna eruption. Geophys. Res. Lett. 35:L22301. doi:10.1029/2008GL035350 Okada, Y., and E. Yamamoto (1991), Dike intrusion model for the 1989 seismovolcanic activity off Ito, central Japan, J. Geophys. Res., 96, 10,361– 10,376. Ozawa, S., S. Miyazaki, T. Nishimura, M. Murakami, M. Kaidzu, T. Imakiire, and X. Ji (2004), Creep, dike intrusion, and magma chamber deflation model for the 2000 Miyake eruption and the Izu islands earthquakes, J. Geophys. Res., 109, B02410, doi:10.1029/2003JB002601. Peltier, A, V. Ferrazzini, T. Staudacher, and P. Bachèlery (2005), Imaging the dynamics of dyke propagation prior to the 2000–2003 flank eruptions at Piton de la Fourniase, Reunion Island, Geophys. Res. Lett. 32 DOI 10.1029/2005GL023720 Poland, M.P., W.P. Moats, and J.H. Fink (2008), A model for radial dike emplacement in composite cones based on observations from Summer Coon volcano, Colorado, USA, Bull Volcanol 70:861–875, DOI 10.1007/s00445-007-0175-9 Pollard, D.D. (1987), Elementary Fracture mechanics applied to the structural interpretation of dykes, H.C. Halls, W.F. Fahrig [Eds.], Mafic Dike Swarms, Geol. Assoc. Canada, 34, 5–24, 1987 Pollard, D.D., and O.H. Muller (1976), The Effect of Gradients in Regional Stress and Magma Pressure on the Form of Sheet Intrusions in Cross Section, J. Geophys. Res., 81, 5, Reches, Z., and J. Fink (1988), The mechanism of intrusion of the Inyo Dike, Long Valley Caldera, California. J. Geophys. Res. 93, 4321–4334 Rivalta, E. (2010), Evidence that coupling to magma chambers controls the volume history and velocity of laterally propagating intrusions, J. Geophys. Res., 115, B07203, doi:10.1029/2009JB006922. Rivalta E., B. Taisne, A.P. Bunger, and R.F. Katz (2015), A review of mechanical models of dike propagation: Schools of thought, results and future directions, Tectonophysics 638 1–42 Rubin, A.M. (1990), A comparison of rift-zone tectonics in Iceland and Hawaii. Bull Volcanol 52:302–319 Rubin, A.M. (1993), Tensile fracture of rock at high confining pressure: implications for dike propagation. J. Geophys. Res. 98, 15919–15935. Rubin, A. (1995), Propagation of magma-filled cracks. Annu. Rev. Earth Planet. Sci. 23, 287–336. Rubin, A.M., Pollard D.D. (1987), Origins of blade-like dikes in volcanic rift zones. In: Decker RW, Wright TL, Stauffer, PH [eds] Volcanism in Hawaii. U.S. Geological Survey Professional Paper 1350, pp. 1449–1470 Rubin, A.M., and D.D. Pollard DD (1988) Dike-induced faulting in rift zones of Iceland and Afar. Geology 16:413–417 Rubin, A.M., D. Gillard, A. Got (1998), reinterpretation of seismicity associated with the January 1983 dike intrusion at Kilauea Volcano, Hawaii, J. Geophys. Res., 103, 10,003-10,015 Ruch, J., T. Wang, W. Xu, M. Hensch, S. Jo´nsson (2016), Oblique rift opening revealed by reoccurring magma injection in central Iceland, Nature Communications, 7:12352, DOI: 10.1038/ncomms12352 Segall, P., P. Cervelli P., S. Owen, M. Lisowski, and A. Miklius (2001), Constraints on dike propagation from continuous GPS measurements, J. Geophys. Res., 106, 19,301-19,317. Sigmundsson, F. et al. (2015), Segmented lateral dyke growth in a rifting event at Bardarbunga volcanic system, Iceland. Nature 517, 191–195 Takada, A. (1990), Experimental Study on Propagation of Liquid-Filled Crack in Gelatin: Shape and Velocity in Hydrostatic Stress Condition, J. Geophys. Res., 95, 8471-8481. Taisne, B. and S. Tait, (2009), Eruption versus intrusion? Arrest of propagation of constant volume, buoyant, liquid-filled cracks in an elastic, brittle host. J. Geophys. Res. S.E., 114, 6202. Taisne, B., S. Tait, C. Jaupart, 2011. Conditions for the arrest of a vertical propagating dyke. Bull. Volcanol. 73, 191–204. Traversa, P., V. Pinel, and J.R. Grasso (2010), A constant influx model for dike propagation: Implications for magma reservoir dynamics, J. Geophys. Res., 115, B01201, doi:10.1029 Valentine, G.A., and K.E.C. Krogh (2006), Emplacement of shallow dikes and sills beneath a small basaltic volcanic center – The role of pre-existing structure [Paiute Ridge, southern Nevada, USA], Earth and Planetary Science Letters 246, 217–230 Yamaoka, K, M. Kawamura, F. Kimata, N. Fujii, and·T. Kudo (2005), Dike intrusion associated with the 2000 eruption of Miyakejima Volcano, Japan, Bull Volcanol., 67:231–242, DOI 10.1007/s00445-004-0406-2 White, R., and W. McCausland (2016), Volcano-tectonic earthquakes: A new tool for estimating intrusive volumes and forecasting eruptions, Journal of Volcanology and Geothermal Research, 309,139–155. Xu, W., S. Jónsson, F. Corbi, and E. Rivalta (2016), Graben formation and dikearrest during the 2009 Harrat Lunayyir dike intrusion in Saudi Arabia: Insights from InSAR, stress calculations and analog experiments, J. Geophys. Res. Solid. Earth, 121, 2837–2851, doi:10.1002/2015JB012505.en
dc.description.obiettivoSpecifico5V. Dinamica dei processi eruttivi e post-eruttivien
dc.description.journalTypeJCR Journalen
dc.contributor.authorBonaccorso, Alessandroen
dc.contributor.authorAoki, Yosukeen
dc.contributor.authorRivalta, Eleonoraen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italiaen
dc.contributor.departmentEarthquake Research Institute, University of Tokyo, Tokyoen
dc.contributor.departmentHelmholtz-Zentrum Potsdam-Deutsches GeoForschungsZentrum GFZ, Potsdam, Germanyen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia-
crisitem.author.deptEarthquake Research Institute, University of Tokyo, Tokyo-
crisitem.author.deptGFZ German Research Center for Geosciences, Potsdam, Germany-
crisitem.author.orcid0000-0002-4770-6006-
crisitem.author.orcid0000-0001-8245-0504-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat
2017_Bonaccorso_et_al_dike energy balance_ GRL-2017.pdf360.7 kBAdobe PDFView/Open
Show simple item record

WEB OF SCIENCETM
Citations 20

2
checked on Feb 10, 2021

Page view(s)

259
checked on Apr 27, 2024

Download(s)

72
checked on Apr 27, 2024

Google ScholarTM

Check

Altmetric