Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/11634
DC FieldValueLanguage
dc.date.accessioned2018-04-05T08:18:19Zen
dc.date.available2018-04-05T08:18:19Zen
dc.date.issued2018en
dc.identifier.urihttp://hdl.handle.net/2122/11634en
dc.description.abstractThe rapid development of several permanent GNSS networks in Italy has made available a huge amount of GNSS observations, giving the chance to figure out and significantly improve the spatial and temporal resolutions of the crustal deformation in the Italian area. More than 20 GNSS networks, promoted and managed by different institutions, constitute the grid of monitoring stations that includes over 1000 permanent stations, mainlydevoted to real-time positioning services but that has proven to be suitable for monitoring slow deforming processes, such as for instance, intraplate deformation processes. The whole set of raw GPS data is routinely processed at INGV providing daily solutions of station coordinates and estimating linear velocities for each station. The information content of coordinate time series is wide, the station position variations incorporate linear and non-linear effects caused by geophysical phenomena of different nature, of which we show some evidences. The sectors where the permanent network is augmented with non-permanent sites allows to study tectonic processes with a finer resolution.en
dc.language.isoEnglishen
dc.relation.ispartofRendiconti Linceien
dc.relation.ispartofseriessup. 1/ 29 (2018)en
dc.subjectGPS velocity fielden
dc.subjectItalyen
dc.subjectTectonic deformationen
dc.titleThe velocity field of the Italian areaen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber51-58en
dc.subject.INGV04.03. Geodesyen
dc.identifier.doi10.1007/s12210-017-0651-xen
dc.relation.referencesAmos CB, Audet P, Hammond WC, Bürgmann R, Johanson IA, Blewitt G (2014) Uplift and seismicity driven by groundwater depletion in central California. Nature 509:483–486. doi:10.1038/nature13275 Anzidei M, Boschi E, Cannelli V, Devoti R, Esposito A, Galvani A, Melini D, Pietrantonio G, Riguzzi F, Sepe E, Serpelloni E (2009) Coseismic deformation of the destructive April 6, 2009 L’Aquila earthquake (central Italy) from GPS data. Geophys Res Lett 36:L17307. doi:10.1029/2009GL039145 Beutler G, Bock H, Dach R, Fridez P, Gäde A, Hugentobler U, Jäggi A, Meindl M, Mervart L, Prange L, Schaer S, Springer T, Urschl C, Walser P (2007) Bernese GPS software version 5.0. In: Dach R, Hugentobler U, Fridez P, Meindl P (eds). Astronomical Institute, University of Bern Cheloni D, Serpelloni E, Devoti R, D’Agostino N, Pietrantonio G, Riguzzi F, Anzidei M, Avallone A, Cavaliere A, Cecere G, D’Ambrosio C, Esposito A, Falco L, Galvani A, Selvaggi G, Sepe V, Calcaterra S, Giuliani R, Mattone M, Gambino P, Abruzzese L, Cardinale V, Castagnozzi A, De Luca G, Massucci A, Memmolo A, Migliari F, Minichiello F, Zarrilli L (2016) GPS observations of coseismic deformation following the 2016, August 24, MW 6 Amatrice earthquake (central Italy): data, analysis and preliminary fault model. Ann Geophys. doi:10.4401/ag-7269 Cowie PA, Scholz CH, Roberts GP, Faure Walker JP, Steer P (2013) Viscous roots of seismogenic faults revealed by geologic slip-rate variations. Nat Geosci 6:1036–1040. doi:10.1038/ngeo1991 D’Agostino N, Jackson JA, Dramis F, Funiciello R (2001) Interactions between mantle upwelling, drainage evolution and active normal faulting: an example from the central Apennines (Italy). Geophys J Int 147(2):475–497. doi:10.1046/j.1365-246X.2001.00539.x Devoti R (2012) Combination of coseismic displacement fields: a geodetic perspective. Ann Geophys. doi:10.4401/ag-6119 Devoti R, Riguzzi M, Cuffaro C Doglioni (2008) New GPS constraints on the kinematics of the Apennine subduction. Earth Planet Sci Lett 273(1–2):163–174 Devoti R, Esposito A, Pietrantonio G, Pisani AR, Riguzzi F (2011) Evidence of large scale deformation patterns from GPS data in the Italian subduction boundary. Earth Planet Sci Lett 311:230–241. doi:10.1016/j.epsl.2011.09.034 Devoti R, Zuliani D, Braitenberg C, Fabris P, Grillo B (2015) Hydrologically induced slope deformations detected by GPS and clinometric surveys in the Cansiglio Plateau, Southern Alps. Earth Planet Sci Lett 419:134–142. doi:10.1016/j.epsl.2015.03.023 Devoti R, Pietrantonio G, Pisani AR, Riguzzi F (2016) Permanent GPS networks in Italy: analysis of time series noise. In: Hotine-Marussi symposium on mathematical geodesy. International Association of Geodesy Symposia. Springer, Berlin. Roma. ISSN: 0939-9585 Devoti R, D’Agostino N, Serpelloni E, Pietrantonio G, Riguzzi F, Avallone A, Cavaliere A, Cheloni D, Cecere G, D’Ambrosio C, Falco L, Selvaggi G, Métois M, Esposito A, Sepe V, Galvani A, Anzidei M (2017) The mediterranean crustal motion map compiled at INGV. Ann Geophys. doi:10.4401/ag-7059 Galvani A, Anzidei M, Devoti R, Esposito A, Pietrantonio G, Pisani AR, Riguzzi F, Serpelloni E (2012) The interseismic velocity field of the Central Apennine from a dense GPS network. Ann Geophys 55:1039–1049. doi:10.4401/ag-5634 Hampel A, Hetzel R (2015) Horizontal surface velocity and strain patterns near thrust and normal faults during the earthquake cycle: the importance of viscoelastic relaxation in the lower crust and implications for interpreting geodetic data. Tectonics 34:731–752. doi:10.1002/2014TC003605 Herring TA, King RW, Floyd MA, McClusky SC (2015) Introduction to GAMIT/GLOBK, release 10.6. Massachusetts Institute of Technology, Cambridge Rend. Fis. Acc. Lincei 1 3 Hoffmann J, Galloway DL, Zebker HA, Amelung F (2001) Seasonal subsidence and rebound in Las Vegas Valley, Nevada, observed by synthetic aperture radar interferometry. Water Resour Res 37(6):1551–1566. doi:10.1029/2000WR900404 Jacob T, Chéry J, Boudin F, Bayer R (2010) Monitoring deformation from hydrologic processes in a karst aquifer using long-baseline tiltmeters. Water Resour Res 46:W09542. doi:10.1029/200 9WR008082 Lin J, Stein RS (2004) Stress triggering in thrust and subduction earthquakes, and stress interaction between the southern San Andreas and nearby thrust and strike-slip faults. J Geophys Res 109:B02303. doi:10.1029/2003JB002607 Longuevergne L, Florsch N, Boudin F, Oudin L, Camerlynck C (2009) Tilt and strain deformation induced by hydrologically active natural fractures: application to the tiltmeters installed in Sainte- Croix-aux-Mines observatory (France). Geophys J Int 178:667– 677. doi:10.1111/j.1365-246X.2009.04197.x Pérouse E, Vernant P, Chéry J, Reilinger R, McClusky S (2010) Active surface deformation and sub-lithospheric processes in the western Mediterranean constrained by numerical models. Geology 38(9):823–826 Pondrelli S, Salimbeni S, Ekström G, Morelli A, Gasperini P, Vannucci G (2006) The Italian CMT dataset from 1977 to the present. Phys Earth Planet Inter 159(3–4):286–303. doi:10.1016/j. pepi.2006.07.008 Savage JC (1983) Strain accumulation in western United States. Ann Rev Earth Planet Sci 11:11–43 Segall P (2010) Earthquake and volcano deformation. Princeton University Press, Princeton Silverii F, D’Agostino N, Métois M, Fiorillo F, Ventafridda G (2016) Transient deformation of karst aquifers due to seasonal and multiyear groundwater variations observed by GPS in southern Apennines (Italy). J Geophys Res Solid Earth 121:8315–8337. doi:10.1002/2016JB013361 Thompson GA, Parsons T (2016) Vertical deformation associated with normal fault systems evolved over coseismic, postseismic, and multiseismic periods. J Geophys Res Solid Earth 121:2153–2173. doi:10.1002/2015JB012240 Wahr J, Khan SA, van Dam T, Liu L, van Angelen JH, van den Broeke MR, Meertens CM (2013) The use of GPS horizontals for loading studies, with applications to Northern California and southeast Greenland. J Geophys Res Solid Earth 118:1795–1806. doi:10.1002/jgrb.50104 Wessel P, Smith WHF, Scharroo R, Luis J, Wobbe F (2013) Generic mapping tools: improved version released. Eos Trans AGU 94(45):409 Zumberge JF, Heflin MB, Jefferson DC, Watkins MM, Webb FH (1997) Precise point positioning for the efficient and robust analysis of GPS data from large networks. J Geophys Res 102:5005–5017. doi:10.1029/96JB03860en
dc.description.obiettivoSpecifico2T. Deformazione crostale attivaen
dc.description.journalTypeJCR Journalen
dc.relation.issn2037-4631en
dc.relation.eissn1720-0776en
dc.contributor.authorDevoti, Robertoen
dc.contributor.authorRiguzzi, Federicaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.orcid0000-0002-0037-0074-
crisitem.author.orcid0000-0003-3453-5110-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Devoti&Riguzzi_RendFisAccLincei2017.pdf3.97 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

5
checked on Feb 10, 2021

Page view(s)

288
checked on Apr 24, 2024

Download(s)

4
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric