Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/11612
DC FieldValueLanguage
dc.date.accessioned2018-03-30T12:07:36Zen
dc.date.available2018-03-30T12:07:36Zen
dc.date.issued2017-09en
dc.identifier.urihttp://hdl.handle.net/2122/11612en
dc.description.abstractThe development of new reverse faults and related folds is strongly controlled by the mechanical characteristics of the host rocks. In this study we analyze the impact of a specific kind of anisotropy, i.e. thin mechanical and frictional discontinuities, in affecting the development of reverse faults and of the associated folds using physical scaled models. We perform analog modeling introducing one or two initially horizontal, thin discontinuities above an initially blind fault dipping at 30° in one case, and 45° in another, and then compare the results with those obtained from a fully isotropic model. The experimental results show that the occurrence of thin discontinuities affects both the development and the propagation of new faults and the shape of the associated folds. New faults 1) accelerate or decelerate their propagation depending on the location of the tips with respect to the discontinuities, 2) cross the discontinuities at a characteristic angle (∼90°), and 3) produce folds with different shapes, resulting not only from the dip of the new faults but also from their non-linear propagation history. Our results may have direct impact on future kinematic models, especially those aimed to reconstruct the tectonic history of faults that developed in layered rocks or in regions affected by pre-existing faults.en
dc.language.isoEnglishen
dc.publisher.nameElsevier Scienceen
dc.relation.ispartofJournal of Structural Geologyen
dc.relation.ispartofseries/102 (2017)en
dc.titleHow do horizontal, frictional discontinuities affect reverse fault-propagation folding?en
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber147-167en
dc.identifier.doi10.1016/j.jsg.2017.08.001en
dc.description.obiettivoSpecifico1T. Deformazione crostale attivaen
dc.description.journalTypeJCR Journalen
dc.contributor.authorBonanno, Emanueleen
dc.contributor.authorBonini, Lorenzoen
dc.contributor.authorBasili, Robertoen
dc.contributor.authorToscani, Giovannien
dc.contributor.authorSeno, Silvioen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.orcid0000-0001-5613-7813-
crisitem.author.orcid0000-0002-1213-0828-
crisitem.author.orcid0000-0002-3278-3287-
crisitem.author.orcid0000-0002-9863-3476-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
2017_Bonanno_etal_JSG.pdfPublished paper8.8 MBAdobe PDF
Bonanno_etal_2017_preprint.pdfOpen Access4.83 MBAdobe PDFView/Open
Show simple item record

WEB OF SCIENCETM
Citations 10

8
checked on Feb 10, 2021

Page view(s)

268
checked on Apr 24, 2024

Download(s)

9
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric