Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/11298
DC FieldValueLanguage
dc.date.accessioned2018-03-20T08:11:40Zen
dc.date.available2018-03-20T08:11:40Zen
dc.date.issued2017-11-15en
dc.identifier.urihttp://hdl.handle.net/2122/11298en
dc.description.abstractGlobal Positioning System (CGPS) data from Mount Etna between May 2015 and September 2016 show intense inflation and a concurrent Slow Slip Event (SSE) from 11 December 2015 to 17 May 2016. In May 2016, an eruptive phase started from the summit craters, temporarily stopping the ongoing inflation. The CGPS data presented here give us the opportunity to determine (1) the source of the inflating body, (2) the strain rate parameters highlighting shear strain rate accumulating along NE Rift and S Rift, (3) the magnitude of the SSE, and (4) possible interaction between modeled sources and other flank structures through stress calculations. By analytical inversion, we find an inflating source 5.5 km under the summit (4.4 km below sea level) and flank slip in a fragmented shallow structure accommodating displacements equivalent to a magnitude Mw6.1 earthquake. These large displacements reflect a complex mechanism of rotations indicated by the inversion of CGPS data for strain rate parameters. At the scale of the volcano, these processes can be considered precursors of seismic activity in the eastern flank of the volcano but concentrated mainly on the northern boundary of the mobile eastern flank along the Pernicana Fault and in the area of the Timpe Fault System.en
dc.language.isoEnglishen
dc.relation.ispartofGeophysical Research Lettersen
dc.relation.ispartofseries/44 (2017)en
dc.subjectWe detected inflation, likely due to magma, beneath Mount Etna’s summit regionen
dc.subjectDuring the inflation, we detected a new Slow Slip Event on the eastern flank of Mount Etnaen
dc.subjectWe construct a model of the inflation leading to the slow slip supported by stress and strain calculationsen
dc.titleInflation Leading to a Slow Slip Event and Volcanic Unrest at Mount Etna in 2016: Insights From CGPS Dataen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber12141-12149en
dc.subject.INGVSlow slip event at Mt. Etnaen
dc.subject.INGVVolcanic unrest at Mt. Etnaen
dc.subject.INGVCGPS dataen
dc.identifier.doi10.1002/2017GL075744en
dc.relation.referencesAloisi, M., Bonaccorso, A., Gambino, S., Mattia, M., & Puglisi, G. (2003). Etna 2002 eruption imaged from continuous tilt and GPS data. Geophysical Research Letters, 30(23), 2214. https://doi.org/10.1029/2003GL018896 Aloisi, M., Mattia, M., Ferlito, C., Palano, M., Bruno, V., & Cannavò, F. (2011). Imaging the multi-level magma reservoir at Mt. Etna volcano (Italy). Geophysical Research Letters, 38, L16306. https://doi.org/10.1029/2011GL048488 Anderson, K., & Segall, P. (2013). Bayesian inversion of data from effusive volcanic eruptions using physics-based models: Application to Mount St. Helens 2004–2008. Journal of Geophysical Research: Solid Earth, 118, 2017–2037. https://doi.org/10.1002/ jgrb.50169. Aster, R. C., Borchers, B., & Thurber, C. H. (2012). Parameter estimation and inverse problems. New York: Academic Press. https://doi.org/ 10.1016/S0074-6142(05)80014-2 Bartlow, N. M., Wallace, L. M., Beavan, R. J., Bannister, S., & Segall, P. (2014). Time-dependent modeling of slow slip events and associated seismicity and tremor at the Hikurangi subduction zone, New Zealand. Journal of Geophysical Research: Solid Earth, 119, 734–753. https:// doi.org/10.1002/2013JB010609 Bonforte, A., Guglielmino, F., Coltelli, M., Ferretti, A., & Puglisi, G. (2011). Structural assessment of Mount Etna volcano from Permanent Scatterers analysis. Geochemistry, Geophysics, Geosystems, 12, Q02002. https://doi.org/10.1029/2010GC003213Bruno, V., Ferlito, C., Mattia, M., Monaco, C., Rossi, M., & Scandura, D. (2016). Evidence of a shallow magma intrusion beneath the NE Rift system of Mt. Etna during 2013. Terra Nova, 28(5), 356–363. https://doi.org/10.1111/ter.12228 Bruno, V., Mattia, M., Aloisi, M., Palano, M., Cannavò, F., & Holt, W. E. (2012). Ground deformations and volcanic processes as imaged by CGPS data at Mt. Etna (Italy) between 2003 and 2008. Journal of Geophysical Research, 117, B07208. https://doi.org/10.1029/2011JB009114 Cervelli, P. (2013). Analytical expressions for deformation from an arbitrarily oriented spheroid in a half-space. Abstract V44C-06 Presented at the 2013 Fall Meeting, AGU, San Francisco, CA, 9–13 Dec. Corsaro, R. A., Andronico, D., Behncke, B., Branca, S., Caltabiano, T., Ciancitto, F.,…De Beni, E. (2017). Monitoring the December 2015 summit eruptions of Mt. Etna (Italy): Implications on eruptive dynamics. Journal of Volcanology and Geothermal Research, 341, 53–69. https://doi. org/10.1016/j.jvolgeores.2017.04.018 Ferlito, C., Bruno, V., Salerno, G., Caltabiano, T., Scandura, D., Mattia, M., & Coltorti, M. (2017). Dome-like behavior at Mt. Etna: The case of the 28 December 2014 South East Crater paroxysm. Scientific Reports, 7(1), 5361. https://doi.org/10.1038/s41598-017-05318-9 Haines, A. J., & Holt, W. E. (1993). A procedure for obtaining the complete horizontal motions within zones of distributed deformation from the inversion of strain rate data. Journal of Geophysical Research, 98(B7), 12,057–12,082. https://doi.org/10.1029/93JB00892 Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57(1), 97–109. https://doi.org/ 10.1093/biomet/57.1.97 Herring, T. A., King, R. W., & McClusky, S. C. (2006). GAMIT reference manual. GPS Analysis at MIT, release, 10, 36. Holt, W. E., & Haines, A. J. (1995). The kinematics of northern South Islands, New Zealand, determined from geologic strain rates. Journal of Geophysical Research, 100, 17,991–18,010. https://doi.org/10.1029/95JB01059 Kreemer, C., Holt, W. E., Goes, S., & Govers, R. (2000). Active deformation in eastern Indonesia and the Philippines from GPS and seismicity data. Journal of Geophysical Research, 105(B1), 663–680. https://doi.org/10.1029/1999JB900356 Mattia, M., Bruno, V., Caltabiano, T., Cannata, A., Cannavò, F., D’Alessandro, W.,…Liuzzo, M. (2015). A comprehensive interpretative model of slow slip events on Mt. Etna’s eastern flank. Geochemistry, Geophysics, Geosystems, 16, 635–658. https://doi.org/10.1002/2014GC005585 Mattia, M., Montgomery-Brown, E. K., Bruno, V., & Scandura, D. (2016). A comparison of slow slip events at Etna and Kilauea volcanoes. Abstract EGU2016–4572 Presented at the EGU Meeting, Vienna, Austria, 17–22 April. Mattia, M., Patane, D., Aloisi, M., & Amore, M. (2007). Faulting on the western flank of Mt Etna and magma intrusions in the shallow crust. Terra Nova, 19(1), 89–94. https://doi.org/10.1111/j.1365-3121.2006.00724.x Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E. (1953). Equation of state calculations by fast computing machines. The Journal of Chemical Physics, 21(6), 1087–1092. https://doi.org/10.1063/1.1699114 Monaco, C., Tappoiner, P., Tortorici, L., & Gillot, P. Y. (1997). Late Quaternary slip rates on the Acireale-Piedimonte normal faults and tectonic origin of Mt. Etna (Sicily). Earth and Planetary Science Letters, 147, 125–139. https://doi.org/10.1016/S0012-821X(97)00005-8 Montgomery-Brown, E. K., Segall, P., & Miklius, A. (2009). Kilauea slow slip events: Identification, source inversions, and relation to seismicity. Journal of Geophysical Research, 114, B00A03. https://doi.org/10.1029/2008JB006074 Montgomery-Brown, E. K., & Syracuse, E. M. (2015). Tremor-genic slow slip regions may be deeper and warmer and may slip slower than non-tremor-genic regions. Geochemistry, Geophysics, Geosystems, 16, 3593–3606. https://doi.org/10.1002/2015GC005895 Okada, Y. (1985). Surface deformation due to shear and tensile fault in half-space. Bulletin of the Seismological Society of America, 75, 1135–1154. Palano, M. (2016). Episodic slow slip events and seaward flank motion at Mt. Etna volcano (Italy). Journal of Volcanology and Geothermal Research, 324, 8–14. https://doi.org/10.1016/j.jvolgeores.2016.05.010 Palano, M., Rossi, M., Cannavò, F., Bruno, V., Aloisi, M., Pellegrino, D., … Mattia, M. (2010). Etn a geodetic reference frame for Mt. Etna GPS networks. Annals of Geophysics, 53(4), 49–57. https://doi.org/10.4401/ag-4879 Schultz, R. A. (1995). Limits on strength and deformation properties of jointed basaltic rock masses. Rock Mechanics and Rock Engineering, 28(1), 1–15. https://doi.org/10.1007/BF01024770 Segall, P. (2010). Earthquake and volcano deformation. Princeton: Princeton University Press. https://doi.org/10.1515/9781400833856 Williams, C. A., & Wadge, G. (1998). The effects of topography on magma chamber deformation models: Application to Mt. Etna and radar interferometry. Geophysical Research Letters, 25(10), 1549–1552. https://doi.org/10.1029/98GL01136 Yang, X. M., Davis, P. M., & Dieterich, J. H. (1988). Deformation from inflation of a dipping finite prolate spheroid in an elastic half-space as a model for volcanic stressing. Journal of Geophysical Research, 93(B5), 4249–4257. https://doi.org/10.1029/JB093iB05p04249en
dc.description.obiettivoSpecifico4V. Dinamica dei processi pre-eruttivien
dc.description.journalTypeJCR Journalen
dc.contributor.authorBruno, Valentinaen
dc.contributor.authorMattia, Marioen
dc.contributor.authorMontgomery-Brown, E.en
dc.contributor.authorRossi, Massimoen
dc.contributor.authorScandura, Danilaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italiaen
dc.contributor.departmentCalifornia Volcano Observatory, United States Geological Survey, Menlo Park, CA, USAen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia-
crisitem.author.deptCalifornia Volcano Observatory, United States Geological Survey, Menlo Park, CA, USA-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia-
crisitem.author.orcid0000-0001-7803-5404-
crisitem.author.orcid0000-0001-6220-4947-
crisitem.author.orcid0000-0001-6787-2055-
crisitem.author.orcid0000-0002-7390-820X-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat
Bruno_et_al-2017-Geophysical_Research_Letters.pdf1.36 MBAdobe PDFView/Open
Show simple item record

WEB OF SCIENCETM
Citations 50

4
checked on Feb 7, 2021

Page view(s)

539
checked on Apr 24, 2024

Download(s)

42
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric